1
|
Liu X, Yao L, Zhang S, Huang C, Yang W. Theoretical Study of Electrocatalytic CO 2 Reduction Mechanism on Typical MXenes under Realistic Conditions. Inorg Chem 2024; 63:6305-6314. [PMID: 38549559 DOI: 10.1021/acs.inorgchem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
MXenes are a revolutionary class of two-dimensional materials that have been recently demonstrated to exhibit promising capability of electrocatalytic CO2 reduction reaction (CO2RR) in theory and experiment. In electrocatalytic reactions, the active phases, the mechanism, and the performance can be greatly influenced by electrochemical conditions such as applied electrode potential, pH, and electrolyte. Therefore, in this first-principles study, the stable surface structures of three typical MXenes (V2C, Mo2C, and Ti3C2) with variation of electrocatalytic conditions were determined by the Pourbaix phase diagrams. Additionally, the reaction mechanism for CO2RR toward C1 products was investigated based on the thermal dynamically stable phases. The computation revealed that surfaces of all three MXenes are dominated by H* termination throughout the practical CO2RR electrochemical condition ranges. Meanwhile, the bicarbonate ions, which serve as the major electrolyte in CO2RR, show thermal dynamic unfavorability to adsorb on the surfaces. Among the three types of MXenes, V2CH exhibits higher activity in generating CO and HCOOH through the CO2RR, while Mo2CH exhibits higher activity in producing HCHO, CH3OH, and CH4. This comprehensive study provides crucial insights into the mechanism of electrocatalytic CO2RR on MXenes under realistic electrochemical conditions.
Collapse
Affiliation(s)
- Xueli Liu
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Lanlan Yao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Sijia Zhang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Chuanqi Huang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| | - Wenshao Yang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
| |
Collapse
|
2
|
Wu X, Wang Y, Wu ZS. Recent advancement and key opportunities of MXenes for electrocatalysis. iScience 2024; 27:108906. [PMID: 38318370 PMCID: PMC10839268 DOI: 10.1016/j.isci.2024.108906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
MXenes are promising materials for electrocatalysis due to their excellent metallic conductivity, hydrophilicity, high specific surface area, and excellent electrochemical properties. Herein, we summarize the recent advancement of MXene-based materials for electrocatalysis and highlight their key challenges and opportunities. In particular, this review emphasizes on the major design principles of MXene-based electrocatalysts, including (1) coupling MXene with active materials or heteroatomic doping to create highly active synergistic catalyst sites; (2) construction of 3D MXene structure or introducing interlayer spacers to increase active areas and form fast mass-charge transfer channel; and (3) protecting edge of MXene or in situ transforming the surface of MXene to stable active substance that inhibits the oxidation of MXene and then enhances the stability. Consequently, MXene-based materials exhibit outstanding performance for a variety of electrocatalytic reactions. Finally, the key challenges and promising prospects of the practical applications of MXene-based electrocatalysts are briefly proposed.
Collapse
Affiliation(s)
- Xianhong Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Kiai MS, Ponnada S, Eroglu O, Mansoor M, Aslfattahi N, Nguyen V, Gadkari S, Sharma RK. Ti 3C 2T x nanosheet@Cu/Fe-MOF separators for high-performance lithium-sulfur batteries: an experimental and density functional theory study. Dalton Trans 2023; 53:82-92. [PMID: 38037690 DOI: 10.1039/d3dt03134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Lithium-sulfur (Li-S) batteries have attracted much attention due to their superior theoretical specific capacity and high theoretical energy density. However, rapid capacity fading originating from the shuttle effect, insulating the S cathode and the dendrite formation on the Li anode restrict the practical applications of Li-S batteries. Herein, we suggest novel coatings on glass fiber separators to satisfy all high-performance Li-S battery requirements. A conductive Ti3C2Tx (MXene) nanosheet/Fe-MOF or Ti3C2Tx (MXene) nanosheet/Cu-MOF layer was coated on a glass fiber separator to act as a polysulfide trapping layer. The MXene layer with high conductivity and polar surface functional groups could confine polysulfides and accelerate the redox conversions. The porous MOF layer acts as a Li ion sieve, thereby leading to the interception of polysulfides and mitigation of Li dendrite growth. The cells with the Cu-MOF/MXenes and Fe-MOF/MXene separators display superior capacities of 1100 and 1131 mA h g-1 after 300 cycles, respectively, whereas the cell with a pure glass fiber separator delivers a very low capacity of 309 mA h g-1 after 300 cycles. With Fe-MOF/MXene and Cu-MOF/MXene configurations, the discharge capacity, coulombic efficiency, cycling stability, and electrochemical conversion reactions are significantly improved. Our ab initio calculations demonstrate that the MXene layer dissociates lithium polysulfides into adsorbed S and mobile Li ions, which explains the experimental findings.
Collapse
Affiliation(s)
- Maryam Sadat Kiai
- Center for BioNano Interactions, School of Chemistry, University College of Dublin, Belfield, Dublin 4, Ireland.
| | - Srikanth Ponnada
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, 80401, USA.
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, India.
| | - Omer Eroglu
- Materials Science and Engineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Mubashir Mansoor
- Metallurgical and Materials Engineering Department, Istanbul Technical University, Istanbul, Turkey
- Department of Applied Physics, Istanbul Technical University, Istanbul, Turkey
| | - Navid Aslfattahi
- Department of Fluid Mechanics and Thermodynamics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague 166 07, Czech Republic
| | - Vinh Nguyen
- TDA Research Inc, 4663 Table Mountain Dr, Golden, CO 80403, USA
| | - Siddarth Gadkari
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, India.
| |
Collapse
|
4
|
Enhanced proton conductivity and overall water splitting efficiency of dye@MOF by post-modification of MOF. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Xia C, Ye H, Kim A, Sabahi Namini A, Li S, Delbari SA, Park JY, Kim D, Le QV, Varma RS, Luque R, T-Raissi A, Jang HW, Shokouhimehr M. Recent catalytic applications of MXene-based layered nanomaterials. CHEMOSPHERE 2023; 325:138323. [PMID: 36906005 DOI: 10.1016/j.chemosphere.2023.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The urgent issues related to the catalytic processes and energy applications have accelerated the development of hybrid and smart materials. MXenes are a new family of atomic layered nanostructured materials that require considerable research. Tailorable morphologies, strong electrical conductivity, great chemical stability, large surface-to-volume ratios, tunable structures, among others are some significant characteristics that make MXenes appropriate for various electrochemical reactions, including dry reforming of methane, hydrogen evolution reaction, methanol oxidation reaction, sulfur reduction reaction, Suzuki-Miyaura coupling reaction, water-gas shift reaction, and so forth. MXenes, on the other hand, have a fundamental drawback of agglomeration, as well as poor long-term recyclability and stability. One possibility for overcoming the restrictions is the fusion of nanosheets or nanoparticles with MXenes. Herein, the relevant literature on the synthesis, catalytic stability and reusability, and applications of several MXene-based nanocatalysts are deliberated including the merits and cons of the newer MXene-based catalysts.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Haoran Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Aejung Kim
- Hankuk University of Foreign Studies, Seoul, 02449, Republic of Korea
| | - Abbas Sabahi Namini
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Seyed Ali Delbari
- Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Joo Young Park
- Department of Nano-bio Convergence, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering, Hanyang University, 15588, Ansan, Republic of Korea; Institute of Nanosensor Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Ali T-Raissi
- University of Central Florida, Florida Solar Energy Center, Cocoa, FL, 32922, USA
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Institute of Nanosensor Technology, Hanyang University, Ansan, 15588, Republic of Korea; Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Enaiet Allah A. Three-dimensional N-doped mesoporous carbon–MXene hybrid architecture for supercapacitor applications. RSC Adv 2023; 13:9983-9997. [PMID: 37006366 PMCID: PMC10052559 DOI: 10.1039/d2ra06817f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
NMC@MXene exhibits excellent rate capability as electrode material for supercapacitors.
Collapse
Affiliation(s)
- Abeer Enaiet Allah
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
7
|
Hanan A, Solangi MY, Jaleel Laghari A, Shah AA, Aftab U, Ibupoto ZA, Abro MI, Lakhan MN, Soomro IA, Dawi EA, Al Karim Haj Ismail A, Mustafa E, Vigolo B, Tahira A, Ibupoto ZH. PdO@CoSe 2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 2022; 13:743-755. [PMID: 36683771 PMCID: PMC9809149 DOI: 10.1039/d2ra07340d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
In this study, we have prepared cobalt selenide (CoSe2) due to its useful aspects from a catalysis point of view such as abundant active sites from Se edges, and significant stability in alkaline conditions. CoSe2, however, has yet to prove its functionality, so we doped palladium oxide (PdO) onto CoSe2 nanostructures using ultraviolet (UV) light, resulting in an efficient and stable water oxidation composite. The crystal arrays, morphology, and chemical composition of the surface were studied using a variety of characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. It was also demonstrated that the composite systems were heterogeneous in their morphology, undergoing a shift in their diffraction patterns, suffering from a variety of metal oxidation states and surface defects. The water oxidation was verified by a low overpotential of 260 mV at a current density of 20 mA cm-2 with a Tafel Slope value of 57 mV dec-1. The presence of multi metal oxidation states, rich surface edges of Se and favorable charge transport played a leading role towards water oxidation with a low energy demand. Furthermore, 48 h of durability is associated with the composite system. With the use of PdO and CoSe2, new, low efficiency, simple electrocatalysts for water catalysis have been developed, enabling the development of practical energy conversion and storage systems. This is an excellent alternative approach for fostering growth in the field.
Collapse
Affiliation(s)
- Abdul Hanan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Muhammad Yameen Solangi
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Abdul Jaleel Laghari
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Aqeel Ahmed Shah
- NED University of Engineering and Technology 75270 Karachi Pakistan
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Zahoor Ahmed Ibupoto
- Faculty of Agricultural Engineering and Technology, PMAS-Arid Agriculture University Rawalpindi Pakistan
| | - Muhammad Ishaque Abro
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology 76080 Jamshoro Pakistan
| | - Muhammad Nazim Lakhan
- Key Laboratory of Superlight Material and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University 150001 Harbin PR China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology 100029 Beijing PR China
| | - Elmuez A Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Abd Al Karim Haj Ismail
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P.O. Box 346 United Arab Emirates
| | - Elfatih Mustafa
- Department of Science and Technology (ITN), Linköping University, Campus Norrköping 60174 Norrköping Sweden
| | | | - Aneela Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs Sindh Pakistan
| | | |
Collapse
|