Li D, Guo Z, Zhao R, Ren H, Huang Y, Yan Y, Cui W, Yao X. An efficient cerium dioxide incorporated nickel cobalt phosphide complex as electrocatalyst for All-pH hydrogen evolution reaction and overall water splitting.
J Colloid Interface Sci 2024;
653:1725-1742. [PMID:
37827011 DOI:
10.1016/j.jcis.2023.09.144]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
Transition metal phosphides (TMPs) have been considered as potential electrocatalysts with adjustable valence states, metal characteristics, and phase diversity. However, it is necessary but remains a major challenge to obtain efficient and durable TMPs catalysts, which can realize efficiently for not only all-pH hydrogen evolution reaction (HER), but also oxygen evolution reaction (OER). Hence, cerium dioxide incorporated nickel cobalt phosphide growth on nickel foam (CeO2/NiCoP) is fabricated by hydrothermal and phosphating reaction. CeO2/NiCoP shows excellent activity for all-pH HER (overpotentials of 48, 58 and 72 mV in alkaline, neutral and acidic solution at the current density of 10 mA cm-2), and has a small OER overpotential (231 mV @ 10 mA cm-2). Moreover, the voltage of overall water splitting in alkaline solution and simulated seawater electrolyte is only 1.46 and 1.41 V (10 mA cm-2), respectively, coupled with outstanding operational stability and corrosion resistance. Further mechanism research shows that CeO2/NiCoP possesses rich heterointerfaces, which serves more exposed active sites and possesses a promising superhydrophilic and superaerophobic surface. Density functional theory calculations manifest that CeO2/NiCoP has appropriate energy for intermediates of reactions. This work provides a deep insight into the CeO2/NiCoP catalyst for high-performance water/seawater electrolysis.
Collapse