1
|
Liu Y, Qin Y, Yu D, Zhuo H, Ma C, Chen K. Enhance Water Electrolysis for Green Hydrogen Production with Material Engineering: A Review. CHEM REC 2025:e202400258. [PMID: 40195465 DOI: 10.1002/tcr.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Indexed: 04/09/2025]
Abstract
Water electrolysis, a traditional and highly technology, is gaining significant attention due to the growing demand for renewable energy resources. It stands as a promising solution for energy conversion, offer substantial benefits in environmental protection and sustainable development efforts. The aim of this research is to provide a concise review of the current state-of-the-art in the field of water electrolysis, focusing on the principles of water splitting fundamental, recent advancements in catalytic materials, various advanced characterization methods and emerging electrolysis technology improvements. Moreover, the paper delves into the development trends of catalysts engineering for water electrolysis, providing insight on how to enhance the catalytic performance. With the advancement of technology and the reduction of costs, hydrogen production through water electrolysis is expected to assume a more significant role in future energy ecosystem. This paper not only synthesizes existing knowledge but also highlights emerging opportunities and potential advancements in this field, offering a clear roadmap for further research and innovation.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuanyuan Qin
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Dawei Yu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyue Zhuo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Churong Ma
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| | - Kai Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
2
|
Zhang L, Yin M, Wei X, Sun Y, Luo Y, Lin H, Shu R, Xu D. An aptamerelectrochemical sensor based on functional carbon nanofibers for tetracycline determination. Bioelectrochemistry 2024; 157:108668. [PMID: 38387209 DOI: 10.1016/j.bioelechem.2024.108668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Fe-Co@CNF was synthesized by electrospinning technology, and AuNPs was loaded onto Fe-Co@CNF by in-situ reduction to obtain Fe-Co@CNF@AuNPs composite material, which was used as the working electrode based on Au-S bond cooperation. The tetracycline electrochemical sensing interface Fe-Co@CNF@AuNPs@Apt was constructed by connecting mercaptoylated tetracycline (TC) aptamers on Fe-Co@CNF@AuNPs surface. The morphology and composition of Fe-Co@CNF@AuNPs composites were characterized by SEM, TEM, EDS, XRD and XPS, and the electrochemical properties of tetracycline were evaluated by CV and DPV. The results showed that the addition of Fe and Co did not destroy the structure of the original carbon nanofibers, and their synergistic effect enhanced the electrocatalytic performance, effective electrode area and electron transfer ability of carbon nanofibers. AuNPs are evenly distributed over the fibers, which effectively improves the electrical conductivity of the material. Under the optimal conditions, the theoretical detection limit of tetracycline was 0.213 nM, and the linear detection range was 5.12-10 mM, which could successfully detect tetracycline in milk.
Collapse
Affiliation(s)
- Li Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Ming Yin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xiuxia Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yiwei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yuting Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Huaqing Lin
- Shanghai Tobacco Group Co. Ltd, Shanghai 200082, PR China
| | - Ruxin Shu
- Shanghai Tobacco Group Co. Ltd, Shanghai 200082, PR China.
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
3
|
Abdpour S, Fetzer MNA, Oestreich R, Beglau THY, Boldog I, Janiak C. Bimetallic CPM-37(Ni,Fe) metal-organic framework: enhanced porosity, stability and tunable composition. Dalton Trans 2024; 53:4937-4951. [PMID: 38270136 DOI: 10.1039/d3dt03695b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A newly synthesized series of bimetallic CPM-37(Ni,Fe) metal-organic frameworks with different iron content (Ni/Fe ≈ 2, 1, 0.5, named CPM-37(Ni2Fe), CPM-37(NiFe) and CPM-37(NiFe2)) demonstrated high N2-based specific SBET surface areas of 2039, 1955, and 2378 m2 g-1 for CPM-37(Ni2Fe), CPM-37(NiFe), and CPM-37(NiFe2), having much higher values compared to the monometallic CPM-37(Ni) and CPM-37(Fe) with 87 and 368 m2 g-1 only. It is rationalized that the mixed-metal nature of the materials increases the structural robustness due to the better charge balance at the coordination bonded cluster, which opens interesting application-oriented possibilities for mixed-metal CPM-37 and other less-stable MOFs. In this work, the CPM-37-derived α,β-Ni(OH)2, γ-NiO(OH), and, plausibly, γ-FeO(OH) phases obtained via decomposition in the alkaline medium demonstrated a potent electrocatalytic activity in the oxygen evolution reaction (OER). The ratio Ni : Fe ≈ 2 from CPM-37(Ni2Fe) showed the best OER activity with a small overpotential of 290 mV at 50 mA cm-2, low Tafel slope of 39 mV dec-1, and more stable OER performance compared to RuO2 after 20 h chronopotentiometry at 50 mA cm-2.
Collapse
Affiliation(s)
- Soheil Abdpour
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Marcus N A Fetzer
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Robert Oestreich
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - István Boldog
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany.
| |
Collapse
|
4
|
Zhao Y, Zhang Z, Wang F, Min S. A hierarchical carbon foam-hosted Co 2P nanoparticles monolithic electrode for ampere-level and super-durable electrocatalytic hydrogen production. Dalton Trans 2024; 53:2450-2455. [PMID: 38263856 DOI: 10.1039/d3dt03951j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In this work, we develop a hierarchical carbon foam-based monolithic electrode (Co2P@HCF) from Co2+-adsorbed polyvinyl alcohol (PVA) sponge via the successive carbonization and phosphorization. Owing to the 3D hierarchical porous structure, excellent electrolyte wettability, good mechanical strength, and intimate embedding of highly dispersed Co2P nanoparticles, the Co2P@HCF electrode delivers a high current density of 1.0 A cm-2 for the hydrogen evolution reaction (HER) at ultralow overpotentials of 189.6 and 218.6 mV in 0.5 M H2SO4 and 1.0 M KOH solutions, respectively, with remarkable durability for 100 h.
Collapse
Affiliation(s)
- Yaoyao Zhao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, P. R. China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
5
|
Li K, Pan S, Zhang H, Zhang Q, Wan D, Zeng X. Interfacial engineering and chemical reconstruction of Mo/Mo 2C@CoO@NC heterostructure for promoting oxygen evolution reaction. Dalton Trans 2023; 52:2693-2702. [PMID: 36745482 DOI: 10.1039/d2dt03865j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical reorganization and interfacial engineering in hybrid nanomaterials are promising strategies for enhancing electrocatalytic performance. Herein, MoO3@zeolitic imidazolate framework-67 (ZIF-67) heterogeneous nanoribbons are designed through coordination assembly. By following heat treatment, a Mo/Mo2C@CoO@NC heterostructure with nitrogen-doped carbon-encapsulated CoO hexagons (CoO@NC) anchored on the Mo/Mo2C jag matrix was fabricated. Notably, through controllable experimental optimization, the as-prepared Mo/Mo2C@CoO@NC heterostructure exhibits numerous active centers (e.g. Mo, Mo2C, CoO, and NC), fully exposed active sites (numerous pores and jagged structures), and abundant heterointerfaces (Mo/Mo2C, Mo2C/CoO@NC, Mo2C/amorphous, and CoO@NC/amorphous), and exhibits good conductivity (localized single-crystal behavior, graphitized carbon). As a result, the as-developed Mo/Mo2C@CoO@NC heterostructures inherit impressive oxygen evolution reaction (OER) performance with an overpotential of only 215 mV at 10 mA cm-2. Furthermore, Mo/Mo2C@CoO@NC heterostructures exhibit excellent stability with a current density retention of 98.4% after 20 h chronoamperometry. This work provides deep insights into chemical reconstructions and tuning heterointerfaces to efficiently enhance the OER activity of heterostructure-based electrocatalysts.
Collapse
Affiliation(s)
- Kai Li
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Sihui Pan
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Haiqi Zhang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Qingqing Zhang
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Detian Wan
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| | - Xiaojun Zeng
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China.
| |
Collapse
|
6
|
MOFs for Electrochemical Energy Conversion and Storage. INORGANICS 2023. [DOI: 10.3390/inorganics11020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metal organic frameworks (MOFs) are a family of crystalline porous materials which attracts much attention for their possible application in energy electrochemical conversion and storage devices due to their ordered structures characterized by large surface areas and the presence in selected cases of a redox-active porous skeleton. Their synthetic versatility and relevant host-guest chemistry make them suitable platform for use in stable and flexible conductive materials. In this review we summarize the most recent results obtained in this field, by analyzing the use of MOFs in fuel and solar cells with special emphasis on PEMFCs and PSCs, their application in supercapacitors and the employment in batteries by differentiating Li-, Na- and other metal ion-batteries. Finally, an overview of the water splitting reaction MOF-catalyzed is also reported.
Collapse
|
7
|
Chen S, Hu J, Zhou HQ, Yu F, Wu CM, Chung LH, Yu L, He J. Microenvironment Regulation of Metal–Organic Frameworks to Anchor Transition Metal Ions for the Electrocatalytic Hydrogen Evolution Reaction. Inorg Chem 2022; 61:19475-19482. [DOI: 10.1021/acs.inorgchem.2c03407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shaoru Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua-Qun Zhou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Fangying Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Can-Min Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|