1
|
Lu H, Wu X, Zhu P, Liu M, Li X, Xin X. A novel Bi 12O 17Cl 2/GO/Co 3O 4 Z-type heterojunction photocatalyst with ZIF-67 derivative modified for highly efficient degradation of antibiotics under visible light. J Colloid Interface Sci 2025; 677:1052-1068. [PMID: 39134080 DOI: 10.1016/j.jcis.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 10/09/2024]
Abstract
Levofloxacin (LVX) is difficult to be naturally degraded by microorganisms in water, and its residues in water will pose significant risks to human health and ecological environment. In this study, Bi12O17Cl2 was used as the main body, Bi12O17Cl2/GO/Co3O4 composite photocatalyst was prepared by pyrolysis of zeolitic imidazolate framework-67 (ZIF-67) combined with in-situ precipitation method and used to degrade LVX. A sequence of characterizations shows that addition of Co3O4 and graphene oxide (GO) increases the visible light response range, improves the separation efficiency of photogenerated electrons and holes (e--h+) of photocatalyst, and thus improves the degradation efficiency of LVX. Under the optimal reaction conditions, the LVX degradation rate of Bi12O17Cl2/1.5GO/7.5Co3O4 can reach 91.2 % at 120 min, and its reaction rate constant is the largest (0.0151 min-1), which is 2.17, 13.14 and 1.53 times that of Bi12O17Cl2, Co3O4 and Bi12O17Cl2/7.5Co3O4, respectively, showing better photocatalytic performance. Simultaneously, the recycling stability of Bi12O17Cl2/1.5GO/7.5Co3O4 was also verified. The capture experiments and electron EPR test results showed that superoxide radicals (•O2-) and photogenerated holes (h+) were the primary active substances in the reaction process. Finally, combined with HPLC-MS results, the photocatalytic degradation pathway of LVX was derived. This work will provide a theoretical basis for the design of Metal Organic Frameworks (MOFs)-derivative modified Bi12O17Cl2-based photocatalysts.
Collapse
Affiliation(s)
- Han Lu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiaolong Wu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Pengfei Zhu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu 610500, PR China.
| | - Mei Liu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xinling Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Xiya Xin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| |
Collapse
|
2
|
Sun Q, Duan P, Zhang W, Xie Y, Ni X, Zheng J. Floatable Cu 2(OH)PO 4/rGO Aerogel for Full Spectrum Driven Photocatalytic Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11087-11097. [PMID: 38718184 DOI: 10.1021/acs.langmuir.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Pengjun Duan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Wenqing Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Yuxuan Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Xiang Ni
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| |
Collapse
|
3
|
Wu B, Wang C, Wang Z, Shen K, Wang K, Li G. Coupling Z-Scheme g-C 3N 4/rGO/MoS 2 Ternary Heterojunction as an Efficient Visible Light Photocatalyst for Hydrogen Evolution and RhB Degradation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1931-1940. [PMID: 38214273 DOI: 10.1021/acs.langmuir.3c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Coupling heterostructures to synergistically improve the light adsorption and promote the charge carrier separation has been regarded as an operative approach to advance the photocatalytic performances. However, it is still challenging to construct heterostructures with appropriate optical properties and interfacial energy structures at the same time. In this work, a Z-scheme g-C3N4/rGO/MoS2 ternary composite photocatalyst is successfully synthesized via an effective hydrothermal method. The as-synthesized g-C3N4/rGO/MoS2 composite photocatalyst exhibited significant improvement for visible light absorption and boosted the separation efficiency of photoinduced electron-hole pairs. The g-C3N4/rGO/MoS2 system exhibited optimum visible-light-induced photocatalytic activity in hydrogen (H2) from water splitting and degrading pollutant rhodamin B (RhB), which is 22 times and 5 times higher than that of pure g-C3N4, respectively. The excellent photocatalytic activities are attributed to the synergetic effects of coupling rGO, g-C3N4, and MoS2 ternary structures to the composite photocatalyst. These combinations of intimate two-dimensional nanoconjugations can effectively inhibit charge recombination and accelerate charge transfer kinetics, forming a Z-scheme-assisted photocatalytic mechanism, thereby exhibiting superior photocatalytic activity.
Collapse
Affiliation(s)
- Bo Wu
- Institute of Energy Innovation, Taiyuan University of Technology, Taiyuan 030024, China
| | - Congwei Wang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Zheyan Wang
- Institute of Energy Innovation, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Shen
- Institute of Energy Innovation, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kaiying Wang
- Institute of Energy Innovation, Taiyuan University of Technology, Taiyuan 030024, China
- Department of Microsystems, University of South-Eastern Norway, Horten, 3184, Norway
| | - Gang Li
- Institute of Energy Innovation, Taiyuan University of Technology, Taiyuan 030024, China
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 361000, China
| |
Collapse
|
4
|
Zhang Y, Yu H, Zhai R, Zhang J, Gao C, Qi K, Yang L, Ma Q. Recent Progress in Photocatalytic Degradation of Water Pollution by Bismuth Tungstate. Molecules 2023; 28:8011. [PMID: 38138501 PMCID: PMC10745909 DOI: 10.3390/molecules28248011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Photocatalysis has emerged as a highly promising, green, and efficient technology for degrading pollutants in wastewater. Among the various photocatalysts, Bismuth tungstate (Bi2WO6) has gained significant attention in the research community due to its potential in environmental remediation and photocatalytic energy conversion. However, the limited light absorption ability and rapid recombination of photogenerated carriers hinder the further improvement of Bi2WO6's photocatalytic performance. This review aims to present recent advancements in the development of Bi2WO6-based photocatalysts. It delves into the photocatalytic mechanism of Bi2WO6 and summarizes the achieved photocatalytic characteristics by controlling its morphology, employing metal and non-metal doping, constructing semiconductor heterojunctions, and implementing defective engineering. Additionally, this review explores the practical applications of these modified Bi2WO6 photocatalysts in wastewater purification. Furthermore, this review addresses existing challenges and suggests prospects for the development of efficient Bi2WO6 photocatalysts. It is hoped that this comprehensive review will serve as a valuable reference and guide for researchers seeking to advance the field of Bi2WO6 photocatalysis.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
- Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali University, Dali 671000, China
| | - Huijuan Yu
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Ruiqi Zhai
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Jing Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Cuiping Gao
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Li Yang
- College of International Education, Dali University, Dali 671000, China;
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
5
|
Cai Z, Lei S, Hu Y, Chen Y, Shen M, Lei M. Iron doped BiOBr loaded on carbon spheres for improved visible-light-driven detoxification of 2-chloroethyl sulfide. Dalton Trans 2023; 52:3040-3051. [PMID: 36779551 DOI: 10.1039/d2dt03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, flower-like porous iron doped bismuth oxybromide on porous activated carbon visible light catalysts (BiOBr/Fe@AC) were prepared by a reactive imidazole ionic liquid surfactant assisted solvothermal process. The morphologies, structures, optical properties and photocatalytic properties were investigated in detail. The morphology of the synthesized Fe doped BiOBr composites gradually changed from a regular spherical shape to a non-specific shape with the increase of the alkyl chain length of the ionic liquid surfactants. The photocurrent of BiOBr/Fe@AC composites is greatly influenced by the content of Fe, the type of carbon sphere and the size of the composites. The photocatalytic activity of the obtained BiOBr/Fe@AC composites was evaluated by the degradation of 2-chloroethyl sulfide (CEES) under visible light. The BiOBr/Fe@AC composites exhibited significantly enhanced photocatalytic performance compared to that of pure BiOBr and the 10.0% Fe doped BiOBr/Fe@AC composite displayed the highest photocatalytic activity. The main active species were determined to be holes and superoxide radicals by electron spin resonance (ESR) analysis and free radical trapping experiments. The introduction of iron can improve the separation and transfer rate of photoinduced charges. Carbon spheres can enhance light harvesting, improve electron transfer and increase the number of catalytic active sites. Iron and carbon embellishment is an effective strategy to enhance the photocatalytic efficiency of BiOBr. Finally, a possible photocatalytic mechanism of BiOBr/Fe@AC has been proposed.
Collapse
Affiliation(s)
- Zixian Cai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China. .,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Shaoan Lei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yimin Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Ming Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Meiling Lei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China.
| |
Collapse
|
6
|
Characterization and photocatalysis of visible light driven Z-scheme Bi2WO6/Bi2MoO6 heterojunction for Rhodamine B degradation. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|