1
|
Mohammadi M, Mardi S, Phopase J, Wentz F, Samuel JJ, Ail U, Berggren M, Crispin R, Tybrandt K, Rahmanudin A. Make it flow from solid to liquid: Redox-active electrofluids for intrinsically stretchable batteries. SCIENCE ADVANCES 2025; 11:eadr9010. [PMID: 40215298 PMCID: PMC11988450 DOI: 10.1126/sciadv.adr9010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
High-capacity stretchable batteries are crucial for next-generation wearables to enable long-term operation and mechanical conformability with the human user. In existing stretchable battery designs, increasing the active material to yield higher capacity often leads to thicker and stiffer solid electrodes with poor mechanical properties. Here, we present a concept that transfers the physical property of a battery electrode from a conventional solid into a fluid state. The mechanical and electrochemical properties of the electrode rely on the viscosity of fluids rather than Young's modulus of solids. Fluids conform easily into any shape with minimal force, making them intrinsically deformable. This decouples the electrochemical and mechanical property of the redox-active electrofluid, leading to higher capacities with more active material loading without stiffening the cell. The cell showed excellent capacity retention over 500 charge-discharge cycles and mechanical robustness up to 100% strain. Our work provides a technological solution for stretchable batteries that balances capacity and mechanical performance.
Collapse
Affiliation(s)
- Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Saeed Mardi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Ångström Laboratory, Department of Chemistry, Uppsala University, 751 21 Uppsala, Sweden
| | - Jaywant Phopase
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Filippa Wentz
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Jibin J. Samuel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Ujwala Ail
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 601 74, Norrköping, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
2
|
Batet D, Gabriel G. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. CHEMSUSCHEM 2025; 18:e202401101. [PMID: 39570276 PMCID: PMC11960596 DOI: 10.1002/cssc.202401101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
The spread of point-of-care (PoC) diagnostic tests using electrochemical sensors poses a significant environmental challenge, especially in limited-resource settings due to the lack of waste management infrastructure. This issue is expected to intensify with the emergence of the Internet of Medical Things (IoMT), necessitating eco-friendly solutions for disposable devices. This review discusses efforts to develop green and sustainable PoC diagnostic devices, clarifying terms like biodegradability and transient electronics. It explores potential transient and biodegradable materials and fabrication technologies, emphasizing sustainable electronics with low-energy consumption and low-carbon footprint techniques, particularly favoring printing methods. The review highlights examples of necessary electronic components containing biodegradable materials for electrochemical PoC devices and discusses their role in device sustainability. Finally, it examines the feasibility of integrating these components and technologies into comprehensive biodegradable PoC devices, addressing the imminent need for eco-friendly solutions in diagnostic testing. This comprehensive discussion serves as a guide for researchers and developers striving to mitigate the environmental impact of PoC testing in the era of IoMT and personalized medicine.
Collapse
Affiliation(s)
- David Batet
- Institut de Microelectrònica de BarcelonaIMB-CNM (CSIC)C/dels Til⋅lers sn, Campus UAB08193 Cerdanyola del VallèsBarcelonaSpain
| | - Gemma Gabriel
- Institut de Microelectrònica de BarcelonaIMB-CNM (CSIC)C/dels Til⋅lers sn, Campus UAB08193 Cerdanyola del VallèsBarcelonaSpain
- CIBER de Bioingeniería, Biomateriales y NanomedicinaInstituto de Salud Carlos IIISpain
| |
Collapse
|
3
|
Rahmanudin A, Mohammadi M, Isacsson P, Li Y, Seufert L, Kim N, Mardi S, Engquist I, Crispin R, Tybrandt K. Stretchable and biodegradable plant-based redox-diffusion batteries. MATERIALS HORIZONS 2024; 11:4400-4412. [PMID: 38946626 DOI: 10.1039/d4mh00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The redox-diffusion (RD) battery concept introduces an environmentally friendly solution for stretchable batteries in autonomous wearable electronics. By utilising plant-based redox-active biomolecules and cellulose fibers for the electrode scaffold, separator membrane, and current collector, along with a biodegradable elastomer encapsulation, the battery design overcomes the reliance on unsustainable transition metal-based active materials and non-biodegradable elastomers used in existing stretchable batteries. Importantly, it addresses the drawback of limited attainable battery capacity, where increasing the active material loading often leads to thicker and stiffer electrodes with poor mechanical properties. The concept decouples the active material loading from the mechanical structure of the electrode, enabling high mass loadings, while retaining a skin-like young's modulus and stretchability. A stretchable ion-selective membrane facilitates the RD process, allowing two separate redox couples, while preventing crossovers. This results in a high-capacity battery cell that is both electrochemically and mechanically stable, engineered from sustainable plant-based materials. Notably, the battery components are biodegradable at the end of their life, addressing concerns of e-waste and resource depletion.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Mohsen Mohammadi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Patrik Isacsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Ahlstrom Group Innovation, 38140 Apprieu, France
| | - Yuyang Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Laura Seufert
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
| | - Nara Kim
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Saeed Mardi
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Ångström Laboratory, Department of Chemistry, Uppsala University, 751 21 Uppsala, Sweden
| | - Isak Engquist
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
| | - Reverant Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 602 21 Norrköping, Sweden.
- Wallenberg Wood Science Center, ITN, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, 601 74 Norrköping, Sweden
| |
Collapse
|
4
|
Andrew LJ, Lizundia E, MacLachlan MJ. Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401560. [PMID: 39221689 DOI: 10.1002/adma.202401560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transient technology involves materials and devices that undergo controlled degradation after a reliable operation period. This groundbreaking strategy offers significant advantages over conventional devices based on non-renewable materials by limiting environmental exposure to potentially hazardous components after disposal, and by increasing material circularity. As the most abundant naturally occurring polymer on Earth, cellulose is an attractive material for this purpose. Besides, (nano)celluloses are inherently biodegradable and have competitive mechanical, optical, thermal, and ionic conductivity properties that can be exploited to develop sustainable devices and avoid the end-of-life issues associated with conventional systems. Despite its potential, few efforts have been made to review current advances in cellulose-based transient technology. Therefore, this review catalogs the state-of-the-art developments in transient devices enabled by cellulosic materials. To provide a wide perspective, the various degradation mechanisms involved in cellulosic transient devices are introduced. The advanced capabilities of transient cellulosic systems in sensing, photonics, energy storage, electronics, and biomedicine are also highlighted. Current bottlenecks toward successful implementation are discussed, with material circularity and environmental impact metrics at the center. It is believed that this review will serve as a valuable resource for the proliferation of cellulose-based transient technology and its implementation into fully integrated, circular, and environmentally sustainable devices.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- UBC BioProducts Institute, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
5
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
6
|
Meghana MC, Nandhini C, Benny L, George L, Varghese A. A road map on synthetic strategies and applications of biodegradable polymers. Polym Bull (Berl) 2022; 80:1-50. [PMID: 36530484 PMCID: PMC9735231 DOI: 10.1007/s00289-022-04565-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have emerged as fascinating materials due to their non-toxicity, environmentally benign nature and good mechanical strength. The toxic effects of non-biodegradable plastics paved way for the development of sustainable and biodegradable polymers. The engineering of biodegradable polymers employing various strategies like radical ring opening polymerization, enzymatic ring opening polymerization, anionic ring opening polymerization, photo-initiated radical polymerization, chemoenzymatic method, enzymatic polymerization, ring opening polymerization and coordinative ring opening polymerization have been discussed in this review. The application of biodegradable polymeric nanoparticles in the biomedical field and cosmetic industry is considered to be an emerging field of interest. However, this review mainly highlights the applications of selected biodegradable polymers like polylactic acid, poly(ε-caprolactone), polyethylene glycol, polyhydroxyalkanoates, poly(lactide-co-glycolide) and polytrimethyl carbonate in various fields like agriculture, biomedical, biosensing, food packaging, automobiles, wastewater treatment, textile and hygiene, cosmetics and electronic devices.
Collapse
Affiliation(s)
- M. C. Meghana
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - C. Nandhini
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Libina Benny
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029 India
| |
Collapse
|