1
|
Hota PK, Jose A, Panda S, Dunietz EM, Herzog AE, Wojcik L, Le Poul N, Belle C, Solomon EI, Karlin KD. Coordination Variations within Binuclear Copper Dioxygen-Derived (Hydro)Peroxo and Superoxo Species; Influences upon Thermodynamic and Electronic Properties. J Am Chem Soc 2024; 146:13066-13082. [PMID: 38688016 PMCID: PMC11161030 DOI: 10.1021/jacs.3c14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved. The dicopper(I) complex [CuI2(BPMPO-)]1+ {BPMPOH = 2,6-bis{[(bis(2-pyridylmethyl)amino]methyl}-4-methylphenol)} undergoes cryogenic dioxygen addition; further manipulations in 2-methyltetrahydrofuran generate dicopper(II) peroxo [CuII2(BPMPO-)(O22-)]1+, hydroperoxo [CuII2(BPMPO-)(-OOH)]2+, and superoxo [CuII2(BPMPO-)(O2•-)]2+ species, characterized by UV-vis, resonance Raman and electron paramagnetic resonance (EPR) spectroscopies, and cold spray ionization mass spectrometry. An unexpected EPR spectrum for [CuII2(BPMPO-)(O2•-)]2+ is explained by the analysis of its exchange-coupled three-spin frustrated system and DFT calculations. A redox equilibrium, [CuII2(BPMPO-)(O22-)]1+ ⇄ [CuII2(BPMPO-)(O2•-)]2+, is established utilizing Me8Fc+/Cr(η6-C6H6)2, allowing for [CuII2(BPMPO-)(O2•-)]2+/[CuII2(BPMPO-)(O22-)]1+ reduction potential calculation, E°' = -0.44 ± 0.01 V vs Fc+/0, also confirmed by cryoelectrochemical measurements (E°' = -0.40 ± 0.01 V). 2,6-Lutidinium triflate addition to [CuII2(BPMPO-)(O22-)]1+ produces [CuII2(BPMPO-)(-OOH)]2+; using a phosphazene base, an acid-base equilibrium was achieved, pKa = 22.3 ± 0.7 for [CuII2(BPMPO-)(-OOH)]2+. The BDFEOO-H = 80.3 ± 1.2 kcal/mol, as calculated for [CuII2(BPMPO-)(-OOH)]2+; this is further substantiated by H atom abstraction from O-H substrates by [CuII2(BPMPO-)(O2•-)]2+ forming [CuII2(BPMPO-)(-OOH)]2+. In comparison to known analogues, the thermodynamic and spectroscopic properties of [CuII2(BPMPO-)] O2-derived adducts can be accounted for based on chelate ring size variations built into the BPMPO- framework and the resulting enhanced CuII-ion Lewis acidity.
Collapse
Affiliation(s)
- Pradip Kumar Hota
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eleanor M Dunietz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Laurianne Wojcik
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Nicolas Le Poul
- UMR CNRS 6521, Université de Bretagne Occidentale, 6 Avenue Le Gorgeu, CS 93837, Brest Cedex 3 29238, France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, DCM, UMR 5250, Grenoble 38058, France
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|