1
|
Lu CL, Fang ZF, Che LQ, Lin Y, Xu SY, Zhuo Y, Hua L, Li J, Jiang XM, Sun MM, Huang YZ, Wu D, Feng B. Dietary sodium butyrate supplementation during mid-to-late gestation enhances reproductive performance and antioxidant capability in sows. Animal 2025; 19:101516. [PMID: 40334573 DOI: 10.1016/j.animal.2025.101516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025] Open
Abstract
Sodium butyrate (NaB) has been used as a feed additive in livestock production due to its antioxidant and anti-inflammatory properties. However, the effect of dietary NaB supplementation during mid- to late gestation on the reproductive performance of sows remains unclear. Thirty-two pregnant sows (Landrace × Yorkshire) at two or three parities were divided into two groups based on similar BW and backfat thickness on day 30 of pregnancy. The control group received a normal gestational diet, while the NaB group was fed a NaB-supplemented diet, of which 2 g/kg corn was replaced with an equal weight of NaB. Sows were fed an experimental diet from day 30 to day 114 of gestation and the same diet during lactation. The reproductive performance, antioxidant, and anti-inflammatory capabilities of sows were analysed. Gestational supplementation of NaB tended to increase the total litter size (P = 0.069) and the number of piglets born alive (P = 0.052), significantly improve placental efficiency (P = 0.049), and increase feed intake during lactation (P = 0.004). Additionally, the stillbirth rate (P = 0.051) tended to be decreased by gestational NaB supplementation. NaB supplementation enhanced the antioxidant capacity of sows, as evidenced by increasing serum T-SOD activity on day 60 of gestation (P < 0.01) and CAT activity on the day of farrowing (P < 0.05), along with reduced serum malondialdehyde concentration on day 90 of gestation (P < 0.05), as compared to control group. Additionally, NaB supplementation tended to decrease serum 8-OHDG concentration on day 60 of gestation (P = 0.064), and increased serum concentrations of short-chain fatty acids (P < 0.05). Taken together, gestational sodium butyrate supplementation might enhance reproductive performance and antioxidant capability in sows. Thus, NaB is a potential additive for improving reproductive performance in sows.
Collapse
Affiliation(s)
- C L Lu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Z F Fang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; College of Food Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - L Q Che
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Y Lin
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - S Y Xu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - Y Zhuo
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - L Hua
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - J Li
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - X M Jiang
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - M M Sun
- College of Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Y Z Huang
- Xuzhou Xinao Biotechnology Co., Xinyi 221400, PR China
| | - D Wu
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China
| | - B Feng
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute,Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China; Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130 Sichuan Province, PR China.
| |
Collapse
|
2
|
Feng Y, Zhao S, Ju R, Li J, Pan C, Tang Q, Zou Z, Jing J, Xu Y, Ding H, Ma J, Li Z, Tang T, Shao Y, Chen L, Huang X, Wang X, Yao B. The therapeutic effect and metabolic mechanism analysis of Guilingji on idiopathic oligo-asthenoteratozoospermia. J Tradit Complement Med 2024; 14:403-413. [PMID: 39035689 PMCID: PMC11259704 DOI: 10.1016/j.jtcme.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Guilingji, a famous traditional Chinese medicine (TCM) formula, has been used to combat aging and male sexual dysfunction in China for centuries. To date, there has been little evidence-based clinical research on the use of Guilingji to treat idiopathic oligo-asthenoteratozoospermia (OAT), and the therapeutic mechanism from a metabolic perspective needs to be investigated further. Methods This was a multicenter, double-blind, randomized controlled clinical study of 240 patients with idiopathic OAT recruited from four hospitals between January 2020 and January 2022. Patients were randomly assigned in a 1꞉1 ratio to receive oral Guilingji capsules or placebo for 12 weeks. The total progressive motile sperm count (TPMSC) was considered the primary outcome, and the other sperm parameters, seminal plasma parameters and serum hormones were considered the secondary outcome. A nontargeted metabolomics analysis of serum from OAT patients before and after Guilingji administration was performed by HPLC-MS to identify key metabolites. Furthermore, we used a rat model to show spermatogenesis phenotypes to validate the effect of the key metabolites screened from the patients. Results At weeks 4, 8 and 12, TPMSC and other sperm parameters were significantly improved in the Guilingji group compared with the placebo group (P < 0.05 for all comparisons). At week 4, superoxide dismutase (SOD) and acrosomal enzyme activity of seminal plasma were significantly elevated in the Guilingji group compared with the placebo group, while reactive oxygen species (ROS) levels were significantly reduced (P < 0.05). Lactate dehydrogenase-X (LDHX) levels appeared to be significantly increased after 12 weeks continuous medication compared with Placebo group (P = 0.032). The metabolomics analysis of serum from OAT patients before and after Guilingji administration showed that the glucose-6-phosphate (G6P) concentration in patients' serum was significantly elevated after Guilingji treatment. Compared to the control, when Kidney-Yang deficiency model rats were treated with Guilingji or its key intermediate metabolite G6P, their sperm concentration and spermatozoic activity were improved similarly, and their structural damage of rat's testicular and epididymal tissues were recovered. Conclusion This study provided valuable clinical evidence for the utility of Guilingji as a treatment for OAT. These findings thus demonstrate that G6P is involved in the therapeutic mechanism of Guilingji in OAT treatment based on clinical and rat intervention studies.
Collapse
Affiliation(s)
- Yuming Feng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Shanmeizi Zhao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Rong Ju
- Department of Obstetrics and Gynecology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Jianbo Li
- Center for Reproductive Medicine of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Chengshuang Pan
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qinglai Tang
- Department of Urology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China
| | - Zhichuan Zou
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yao Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211116, Jiangsu, China
| | - Hualong Ding
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Zhou Li
- Department of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yong Shao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xuefeng Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiaohong Wang
- Center for Reproductive Medicine of Obstetrics and Gynecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Bing Yao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
3
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
4
|
Zheng J, Li Z, Xu H. Intestinal Microbiotas and Alcoholic Hepatitis: Pathogenesis and Therapeutic Value. Int J Mol Sci 2023; 24:14809. [PMID: 37834256 PMCID: PMC10573193 DOI: 10.3390/ijms241914809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Alcoholic hepatitis (AH) is a rapidly progressing and severe stage of alcoholic liver disease, presenting a grim prognosis. Extensive research has elucidated several underlying mechanisms that contribute to the development of AH, including metabolic alterations, immune stimulation, and intestinal dysbiosis. These pathological changes intricately intertwine during the progression of AH. Notably, recent studies have increasingly highlighted the pivotal role of alterations in the intestinal microbiota in the pathogenesis of AH. Consequently, future investigations should place significant emphasis on exploring the dynamics of intestinal microbiota. In this comprehensive review, we consolidate the primary causes of AH while underscoring the influence of gut microbes. Furthermore, by examining AH treatment strategies, we delineate the potential therapeutic value of interventions targeting the gut microbiota. Given the existing limitations in AH treatment options, we anticipate that this review will contribute to forthcoming research endeavors aimed at advancing AH treatment modalities.
Collapse
Affiliation(s)
- Jiazhen Zheng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Ziyi Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; (J.Z.); (Z.L.)
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
5
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|