1
|
Gulbalkan H, Uzun A, Keskin S. Evaluating CH 4/N 2 Separation Performances of Hundreds of Thousands of Real and Hypothetical MOFs by Harnessing Molecular Modeling and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17691-17702. [PMID: 38082488 PMCID: PMC11956003 DOI: 10.1021/acsami.3c13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 03/28/2025]
Abstract
Considering the large abundance and diversity of metal-organic frameworks (MOFs), evaluating the gas adsorption and separation performance of the entire MOF material space using solely experimental techniques or brute-force computer simulations is impractical. In this study, we integrated high-throughput molecular simulations with machine learning (ML) to explore the potential of both synthesized, the real MOFs, and computer-generated, the hypothetical MOFs (hypoMOFs), for adsorption-based CH4/N2 separation. CH4/N2 mixture adsorption data obtained from molecular simulations were used to train the ML models that could accurately predict gas uptakes of 4612 real MOFs. These models were then transferred to two distinct databases consisting of 98 601 hypoMOFs and 587 anion-pillared hypoMOFs to examine their CH4/N2 mixture separation performances using various adsorbent evaluation metrics. The top adsorbents were identified for vacuum swing adsorption (VSA) and pressure swing adsorption (PSA) conditions and examined in detail to gain molecular insights into their structural and chemical properties. Results revealed that the hypoMOFs offered high CH4 selectivities, up to 14.8 and 13.6, and high working capacities, up to 3.1 and 5.8 mol/kg, at VSA and PSA conditions, respectively, and many of the hypoMOFs could outperform the real MOFs. Our approach offers a rapid and accurate assessment of the mixture adsorption and separation properties of MOFs without the need for computationally demanding simulations. Our results for the best adsorbents will be useful in accelerating the experimental efforts for the design of novel MOFs that can achieve high-performance CH4/N2 separation.
Collapse
Affiliation(s)
- Hasan
Can Gulbalkan
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Alper Uzun
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç
University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç
University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department
of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
2
|
Wei X, Xia Y, Wei S, Chen Y, Yang S. Microporous Adsorbents for CH 4 Capture and Separation from Coalbed Methane with Low CH 4 Concentration: Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:208. [PMID: 39940184 PMCID: PMC11820153 DOI: 10.3390/nano15030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/14/2025]
Abstract
A rapid increase in natural gas consumption has resulted in a shortage of conventional natural gas resources, while an increasing concentration of CH4 in the atmosphere has intensified the greenhouse effect. The exploration and utilization of coalbed methane (CBM) resources not only has the potential to fill the gap in natural gas supply and promote the development of green energy, but could also reduce CH4 emissions into the atmosphere and alleviate global warming. However, the efficient separation of CH4 and N2 has become a significant challenge in the utilization of CBM, which has attracted significant attention from researchers in recent years. The development of efficient CH4/N2 separation technologies is crucial for enhancing the exploitation and utilization of low-concentration CBM and is of great significance for sustainable development. In this paper, we provide an overview of the current methods for CH4/N2 separation, summarizing their respective advantages and limitations. Subsequently, we focus on reviewing research advancements in adsorbents for CH4/N2 separation, including zeolites, metal-organic frameworks (MOFs), and porous carbon materials. We also analyze the relationship between the pore structure and surface properties of these adsorbents and their adsorption separation performances, and summarize the challenges and difficulties that different types of adsorbents face in their future development. In addition, we also highlight that matching the properties of adsorbents and adsorbates, controlling pore structures, and tuning surface properties on an atomic scale will significantly increase the potential of adsorbents for CH4 capture and separation from CBM.
Collapse
Affiliation(s)
- Xiao Wei
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| | - Yingkai Xia
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| | - Shuang Wei
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| | - Yuehui Chen
- School of Mining, Liaoning Technical University, Fuxin 123000, China;
| | - Shaobin Yang
- College of Material Science and Engineering, Liaoning Technical University, Fuxin 123000, China; (X.W.); (Y.X.); (S.W.)
| |
Collapse
|
3
|
Leszczyński MK, Niepiekło K, Terlecki M, Justyniak I, Lewiński J. Chromium(II)-isophthalate 2D MOF with Redox-Tailorable Gas Adsorption Selectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45100-45106. [PMID: 39158133 PMCID: PMC11367576 DOI: 10.1021/acsami.4c06228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Redox-active metal-organic frameworks (MOFs) are very promising materials due to their potential capabilities for postsynthetic modification aimed at tailoring their application properties. However, the research field related to redox-active MOFs is still relatively underdeveloped, which limits their practical application. We investigated the self-assembly process of Cr(II) ions and isophthalate (m-bdc) linkers, which have been previously demonstrated to yield 0D metal-organic polyhedra. However, using the diffusion-controlled synthetic approach, we demonstrate the selective preparation of a 2D-layered Cr(II)-based MOF material [Cr(m-bdc)]·H2O (1·H2O). Remarkably, the controlled oxidation of the developed 2D MOF using nitric oxide or dry oxygen resulted in modified porous materials with excellent H2/N2 adsorption selectivities.
Collapse
Affiliation(s)
- Michał K. Leszczyński
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Niepiekło
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Terlecki
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Iwona Justyniak
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Janusz Lewiński
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Zhang HD, Li XD, Xie YY, Yang PH, Yu JX. High throughput screening of pure silica zeolites for CF 4 capture from electronics industry gas. Phys Chem Chem Phys 2024; 26:11570-11581. [PMID: 38533820 DOI: 10.1039/d4cp00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The capture and separation of CF4 from CF4/N2 mixture gas is a crucial issue in the electronics industry, as CF4 is a commonly used etching gas and the ratio of CF4 to N2 directly affects process efficiency. Utilizing high-throughput computational screening techniques and grand canonical Monte Carlo (GCMC) simulations, we comprehensively screened and assessed 247 types of pure silicon zeolite materials to determine their adsorption and separation performance for CF4/N2 mixtures. Based on screening, the relationships between the structural parameters and adsorption and separation properties were meticulously investigated. Four indicators including adsorption selectivity, working capacity, adsorbent performance score (APS), and regenerability (R%) were used to evaluate the performance of adsorbents. Based on the evaluation, we selected the top three best-performing zeolite structures for vacuum swing adsorption (LEV, AWW and ESV) and pressure swing adsorption (AVL, ZON, and ERI) processes respectively. Also, we studied the preferable adsorption sites of CF4 and N2 in the selected zeolite structures through centroid density distributions at the molecule level. We expect the study may provide some valuable guidance for subsequent experimental investigations on adsorption and separation of CF4/N2.
Collapse
Affiliation(s)
- Hui-Dong Zhang
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Xiao-Dong Li
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Yan-Yu Xie
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Peng-Hui Yang
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| | - Jing-Xin Yu
- College of Science, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Zhao YL, Zhang X, Li MZ, Li JR. Non-CO 2 greenhouse gas separation using advanced porous materials. Chem Soc Rev 2024; 53:2056-2098. [PMID: 38214051 DOI: 10.1039/d3cs00285c] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Global warming has become a growing concern over decades, prompting numerous research endeavours to reduce the carbon dioxide (CO2) emission, the major greenhouse gas (GHG). However, the contribution of other non-CO2 GHGs including methane (CH4), nitrous oxide (N2O), fluorocarbons, perfluorinated gases, etc. should not be overlooked, due to their high global warming potential and environmental hazards. In order to reduce the emission of non-CO2 GHGs, advanced separation technologies with high efficiency and low energy consumption such as adsorptive separation or membrane separation are highly desirable. Advanced porous materials (APMs) including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs), porous organic polymers (POPs), etc. have been developed to boost the adsorptive and membrane separation, due to their tunable pore structure and surface functionality. This review summarizes the progress of APM adsorbents and membranes for non-CO2 GHG separation. The material design and fabrication strategies, along with the molecular-level separation mechanisms are discussed. Besides, the state-of-the-art separation performance and challenges of various APM materials towards each type of non-CO2 GHG are analyzed, offering insightful guidance for future research. Moreover, practical industrial challenges and opportunities from the aspect of engineering are also discussed, to facilitate the industrial implementation of APMs for non-CO2 GHG separation.
Collapse
Affiliation(s)
- Yan-Long Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Mu-Zi Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|