1
|
Gangareddy J, Rudra P, Chirumamilla M, Ganisetti S, Kasimuthumaniyan S, Sahoo S, Jayanthi K, Rathod J, Soma VR, Das S, Gosvami NN, Krishnan NMA, Pedersen K, Mondal S, Ghosh S, Allu AR. Multi-Functional Applications of H-Glass Embedded with Stable Plasmonic Gold Nanoislands. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303688. [PMID: 37670541 DOI: 10.1002/smll.202303688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/11/2023] [Indexed: 09/07/2023]
Abstract
Metal nanoparticles (MNPs) are synthesized using various techniques on diverse substrates that significantly impact their properties. However, among the substrate materials investigated, the major challenge is the stability of MNPs due to their poor adhesion to the substrate. Herein, it is demonstrated how a newly developed H-glass can concurrently stabilize plasmonic gold nanoislands (GNIs) and offer multifunctional applications. The GNIs on the H-glass are synthesized using a simple yet, robust thermal dewetting process. The H-glass embedded with GNIs demonstrates versatility in its applications, such as i) acting as a room temperature chemiresistive gas sensor (70% response for NO2 gas); ii) serving as substrates for surface-enhanced Raman spectroscopy for the identifications of Nile blue (dye) and picric acid (explosive) analytes down to nanomolar concentrations with enhancement factors of 4.8 × 106 and 6.1 × 105 , respectively; and iii) functioning as a nonlinear optical saturable absorber with a saturation intensity of 18.36 × 1015 W m-2 at 600 nm, and the performance characteristics are on par with those of materials reported in the existing literature. This work establishes a facile strategy to develop advanced materials by depositing metal nanoislands on glass for various functional applications.
Collapse
Affiliation(s)
- Jagannath Gangareddy
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
| | - Pratyasha Rudra
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manohar Chirumamilla
- Department of Materials and Production, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
- Institute of Optical and Electronic Materials, Hamburg University of Technology, Eissendorfer Strasse 38, 21073, Hamburg, Germany
| | - Sudheer Ganisetti
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Subramanian Kasimuthumaniyan
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sourav Sahoo
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - K Jayanthi
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jagannath Rathod
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia-Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), DRDO Industry Academia-Centre of Excellence (DIA-COE), University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Subrata Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Nitya Nand Gosvami
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - N M Anoop Krishnan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Kjeld Pedersen
- Department of Materials and Production, Aalborg University, Skjernvej 4A, Aalborg, 9220, Denmark
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Srabanti Ghosh
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amarnath R Allu
- CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Pi W, Chen X, Humayun M, Yuan Y, Dong W, Zhang G, Chen B, Fu Q, Lu Z, Li H, Tang Z, Luo W. Highly Sensitive Chemiresistive H 2S Detection at Subzero Temperature over the Sb-Doped SnO 2@g-C 3N 4 Heterojunctions under UV Illumination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36894512 DOI: 10.1021/acsami.3c00213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
NASA has detected H2S in the persistently shadowed region of the lunar South Pole through NIR and UV/vis spectroscopy remotely, but in situ detection is generally considered to be more accurate and convincing. However, subzero temperatures in space drastically reduce chemisorbed oxygen ions for gas sensing reactions, making gas sensing at subzero temperature something that has rarely been attempted. Herein, we report an in situ semiconductor H2S gas sensor assisted by UV illumination at subzero temperature. We constructed a g-C3N4 network to wrap the porous Sb doped SnO2 microspheres to form type II heterojunctions, which facilitate the separation and transport of photoinduced charge carriers under UV irradiation. This UV-driven technique affords the gas sensor a fast response time of 14 s and a response value of 20.1 toward 2 ppm H2S at -20 °C, realizing the sensitive response of the semiconductor gas sensor at subzero temperature for the first time. Both the experimental observations and theoretical calculation results provide evidence that UV irradiation and the formation of type II heterojunctions together promote the performance at subzero temperature. This work fills the gap of semiconductor gas sensors working at subzero temperature and suggests a feasible method for deep space gas detection.
Collapse
Affiliation(s)
- Wenbo Pi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xi Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Muhammad Humayun
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yang Yuan
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wen Dong
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guangzu Zhang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bingbing Chen
- Department of Energy Science and Engineering, Nanjing Tech University, Nanjing 210000, P. R. China
| | - Qiuyun Fu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zixiao Lu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Honglang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zaiqi Tang
- Sysmo Technologies Co., LTD, Beijing 100020, P. R. China
| | - Wei Luo
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, P. R. China
| |
Collapse
|
3
|
Chen H, Chen J, Liu Y, Li B, Li H, Zhang X, Lv C, Dong H. Wearable Dual-Signal NH 3 Sensor with High Sensitivity for Non-invasive Diagnosis of Chronic Kidney Disease. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3420-3430. [PMID: 36880227 DOI: 10.1021/acs.langmuir.2c03347] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
NH3 gas in human exhaled breath contains abundant physiological information related to human health, especially chronic kidney disease (CKD). Unfortunately, up to now, most wearable NH3 sensors show inevitable defects (low sensitivity, easy to be interfered by the environment, etc.), which may lead to misdiagnosis of CKD. To solve the above dilemma, a nanoporous, heterogeneous, and dual-signal (optical and electrical) wearable NH3 sensor mask is developed successfully. More specifically, a polyacrylonitrile/bromocresol green (PAN/BCG) nanofiber film as a visual NH3 sensor and a polyacrylonitrile/polyaniline/reduced graphene oxide (PAN/PANI/rGO) nanofiber film as a resistive NH3 sensor are constructed. Due to the high specific surface area and abundant NH3 binding sites of these two nanofiber films, they exhibit good NH3 sensing performance. However, although the visual NH3 sensor (PAN/BCG nanofiber film) is simple without the need of any detecting facilities and quite stable when temperature and humidity change, it shows poor sensitivity and resolution. In comparison, the resistive NH3 sensor (PAN/PANI/rGO nanofiber film) is of high sensitivity, fast response, and good resolution, but its electrical signal is easily interfered by the external environment (such as humidity, temperature, etc.). Considering that the sensing principles between a visual NH3 sensor and resistive NH3 sensor are significantly different, a wearable dual-signal NH3 sensor containing both a visual NH3 sensor and resistive NH3 sensor is further explored. Our data prove that the two sensing signals in this dual-signal NH3 sensor mask can not only work well without interference with each other but also complement each other to improve the sensing accuracy, indicating its potential application in non-invasive diagnosis of CKD.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Junlin Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Bingrui Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Haofei Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xing Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Chuhan Lv
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, Guangdong 510641, China
| |
Collapse
|
4
|
Shin W, Kim J, Jung G, Ju S, Park S, Jeong Y, Hong S, Koo R, Yang Y, Kim J, Han S, Lee J. In-Memory-Computed Low-Frequency Noise Spectroscopy for Selective Gas Detection Using a Reducible Metal Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205725. [PMID: 36646505 PMCID: PMC9982552 DOI: 10.1002/advs.202205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Concerns about indoor and outdoor air quality, industrial gas leaks, and medical diagnostics are driving the demand for high-performance gas sensors. Owing to their structural variety and large surface area, reducible metal oxides hold great promise for constructing a gas-sensing system. While many earlier reports have successfully obtained a sufficient response to various types of target gases, the selective detection of target gases remains challenging. In this work, a novel method, low-frequency noise (LFN) spectroscopy is presented, to achieve selective detection using a single FET-type gas sensor. The LFN of the sensor is accurately modeled by considering the charge fluctuation in both the sensing material and the FET channel. Exposure to different target gases produces distinct corner frequencies of the power spectral density that can be used to achieve selective detection. In addition, a 3D vertical-NAND flash array is used with the fast Fourier transform method via in-memory-computing, significantly improving the area and power efficiency rate. The proposed system provides a novel and efficient method capable of selectively detecting a target gas using in-memory-computed LFN spectroscopy and thus paving the way for the further development in gas sensing systems.
Collapse
Affiliation(s)
- Wonjun Shin
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Jaehyeon Kim
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Gyuweon Jung
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Suyeon Ju
- Department of Materials Science and Engineering and Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Sung‐Ho Park
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yujeong Jeong
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Ryun‐Han Koo
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Yeongheon Yang
- Research and Development DivisionSK Hynix Inc.Icheon17736Republic of Korea
| | - Jae‐Joon Kim
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
| | - Seungwu Han
- Department of Materials Science and Engineering and Research Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Jong‐Ho Lee
- Department of Electrical and Computer Engineering and Inter‐university Semiconductor Research CenterSeoul National UniversitySeoul08826Republic of Korea
- Ministry of Science and ICTSejong30121Republic of Korea
| |
Collapse
|
5
|
Paul S, Sen B, Basak N, Chakraborty N, Bhakat K, Das S, Islam E, Mondal S, Abbas SJ, Ali SI. Zn 3Sb 4O 6F 6 and KI-Doped Zn 3Sb 4O 6F 6: A Metal Oxyfluoride System for Photocatalytic Activity, Knoevenagel Condensation, and Bacterial Disinfection. Inorg Chem 2023; 62:1032-1046. [PMID: 36598860 DOI: 10.1021/acs.inorgchem.2c04006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zn3Sb4O6F6 crystallites were synthesized by a pH-regulated hydrothermal synthetic approach, while doping on Zn3Sb4O6F6 by KI was performed by the "incipient wetness impregnation technique." The effect of KI in Zn3Sb4O6F6 is found with the changes in morphology in the doped compound, i.e., needle-shaped particles with respect to the irregular cuboid and granular shaped in the pure compound. Closer inspection of the powder diffraction pattern of doped compounds also reveals the shifting of Braggs' peaks toward a lower angle and the difference in cell parameters compared to the pure compound. Both metal oxyfluoride comprising lone pair elements and their doped compounds have been successfully applied as photocatalysts for methylene blue dye degradation. Knoevenagel condensation reactions were performed using Zn3Sb4O6F6 as the catalyst and confirmed 99% yield even at 60 °C temperature under solvent-free conditions. Both pure and KI-doped compounds were tested against several standard bacterial strains, i.e., Enterobacter sp., Escherichia coli, Staphylococcus sp., Salmonella sp., Bacillus sp., Proteous sp., Pseudomonas sp., and Klebsiella sp. by the "disk diffusion method" and their antimicrobial activities were confirmed.
Collapse
Affiliation(s)
- Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nirman Chakraborty
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Kiron Bhakat
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| |
Collapse
|
6
|
Li M, Tang J, Luo Y, Yang J, Liu J, Peng J, Fang Y. Imine Bond-Based Fluorescent Nanofilms toward High-Performance Detection and Efficient Removal of HCl and NH 3. Anal Chem 2023; 95:2094-2101. [PMID: 36633555 DOI: 10.1021/acs.analchem.2c05059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A new kind of imine bond-based fluorescent nanofilm was developed as multifunctional materials for high-performance detection and efficient removal of hydrogen chloride (HCl) and ammonia (NH3). The flexible, uniform, and photochemically stable nanofilms as prepared showed fast (<1 and <0.5 s), sensitive (<150 ppb and <1.5 ppm), and selective response to HCl and NH3, respectively, and the removal efficiencies to HCl and NH3 are 187.5 and 37.5% (w/w), respectively. A reversible earthy-red to green fluorescence color change upon adsorption of NH3 or HCl enabled visualized monitoring of the two gases in the air. Mechanism studies revealed that the adsorption of HCl is a result of hydrogen bond formation between the analyte and the imine groups. Adsorption of NH3, however, is a result of chemical reaction with the pre-adsorbed HCl. The applicability of the detection and removal strategies as developed was further verified by conducting the tests on real-life or simulated scenarios.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Yan Luo
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Jianfei Liu
- Northwest Institute for Nonferrous Metal Research, Xi'an, Shaanxi710016, China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi710062, P. R. China
| |
Collapse
|
7
|
Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. BIOSENSORS 2023; 13:114. [PMID: 36671949 PMCID: PMC9855562 DOI: 10.3390/bios13010114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In general, volatile organic compounds (VOCs) have a high vapor pressure at room temperature (RT). It has been reported that all humans generate unique VOC profiles in their exhaled breath which can be utilized as biomarkers to diagnose disease conditions. The VOCs available in exhaled human breath are the products of metabolic activity in the body and, therefore, any changes in its control level can be utilized to diagnose specific diseases. More than 1000 VOCs have been identified in exhaled human breath along with the respiratory droplets which provide rich information on overall health conditions. This provides great potential as a biomarker for a disease that can be sampled non-invasively from exhaled breath with breath biopsy. However, it is still a great challenge to develop a quick responsive, highly selective, and sensitive VOC-sensing system. The VOC sensors are usually coated with various sensing materials to achieve target-specific detection and real-time monitoring of the VOC molecules in the exhaled breath. These VOC-sensing materials have been the subject of huge interest and extensive research has been done in developing various sensing tools based on electrochemical, chemoresistive, and optical methods. The target-sensitive material with excellent sensing performance and capturing of the VOC molecules can be achieved by optimizing the materials, methods, and its thickness. This review paper extensively provides a detailed literature survey on various non-biological VOC-sensing materials including metal oxides, polymers, composites, and other novel materials. Furthermore, this review provides the associated limitations of each material and a summary table comparing the performance of various sensing materials to give a better insight to the readers.
Collapse
Affiliation(s)
- Akhilesh Kumar Pathak
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kankan Swargiary
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntaporn Kongsawang
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathorn Jitpratak
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppasin Ajchareeyasoontorn
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Udomkittivorakul
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charusluk Viphavakit
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Chakraborty N, Panda SN, Mishra AK, Barman A, Mondal S. Ferromagnetic Ni 1-xV xO 1-y Nano-Clusters for NO Detection at Room Temperature: A Case of Magnetic Field-Induced Chemiresistive Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52301-52315. [PMID: 36375038 DOI: 10.1021/acsami.2c15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surface modulation of functional nanostructures is an efficient way of improving gas sensing properties in chemiresistive materials. However, synthesis methods employed so far in achieving desired performances are cumbersome and energy intensive. Moreover, nano-engineering-induced magnetic properties of these materials which are expected to enhance sensing responses have not been utilized until now in improving their interaction with target gases. In particular for gasses with paramagnetic nature such as NO or NO2, the inherent magnetic property of the chemiresistor might assist in enabling superior sensing performance. In this work, vanadium-doped NiO nano-clusters with ferromagnetic behavior at room temperature have been synthesized by a simple and effective combination of soft chemical routes and employed in efficient and selective detection of paramagnetic NO gas. While NiO is typically anti-ferromagnetic, the nanoscale engineering of NiO- and V-doped NiO samples have been found to tune the inherent anti-ferromagnetic behavior into room-temperature ferromagnetism. Surface modification in terms of formation of nano-clusters led to an increased Brunauer-Emmett-Teller surface area of ∼120 m2/g. The sample Ni0.636V0.364O has been observed to exhibit a selective and high response of ∼98% to 1 ppm NO at room temperature with fast response (14 s) and recovery (95 s). The improved sensing response of this sample compared to other doped NiO variants could be explained in terms of lower remnant magnetic moment of the sample accompanied with higher excess negative charge at the surface. The sensing response of this sample was increased by 30% in the presence of an external magnetic field of 280 gauss, highlighting the importance of magnetic ordering in chemiresistive gas sensing between the magnetic sensor material and target analyte. This material stands as a potential gas sensor with excellent NO detection properties.
Collapse
Affiliation(s)
- Nirman Chakraborty
- CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Surya Narayan Panda
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Ajay K Mishra
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anjan Barman
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|