1
|
Cheng Z, Ye Q, Lao J, Liu X, Wu P. Conjugated Polymer-Photosensitizers for Cancer Photodynamic Therapy and Their Multimodal Treatment Strategies. Polymers (Basel) 2025; 17:1258. [PMID: 40363042 PMCID: PMC12074309 DOI: 10.3390/polym17091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 04/29/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Conjugated polymers (CPs) have emerged as promising candidates for photodynamic therapy (PDT) in cancer treatment due to their high fluorescence quantum yield, excellent photostability, and remarkable reactive oxygen species (ROS) generation capability. This review systematically summarizes molecular design strategies to augment CP photosensitivity efficiency, including: (1) constructing donor-acceptor (D-A) alternating structures, (2) incorporating aggregation-induced emission (AIE) moieties, (3) employing heavy-atom effects, and (4) designing hyperbranched architectures. In addition, considering the limitations of monotherapy like tumor heterogeneity, we will further discuss the synergistic treatment strategies of CP-mediated PDT in combination with other therapeutic modalities, including photothermal therapy (PTT)-PDT, immunotherapy-PDT, chemotherapy-PDT, Chemiluminescence (CL)-PDT, diagnostic technology-PDT, and chemodynamic therapy (CDT)-PDT. These multimodal approaches leverage complementary mechanisms to achieve enhanced tumor eradication efficacy.
Collapse
Affiliation(s)
- Zhengqing Cheng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.C.); (Q.Y.); (J.L.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiuting Ye
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.C.); (Q.Y.); (J.L.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Jieling Lao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.C.); (Q.Y.); (J.L.)
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.C.); (Q.Y.); (J.L.)
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (Z.C.); (Q.Y.); (J.L.)
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
2
|
Zhang J, Zhang A, Liu S, Dong Z, Zhao J, Sun Y, Wei Q, Wang D, Wang S, Yu A, Li ZR, Yan R, Wang Y. Nanosized Porphyrin-Containing Covalent Organic Polymer to Enhance Ferroptosis in Photodynamic Treatment of Tumor Cells via Glutathione Depletion. Bioconjug Chem 2024; 35:1450-1458. [PMID: 39213480 DOI: 10.1021/acs.bioconjchem.4c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells. Ultimately by the hyaluronic acid to encapsulate the COP to get S-COP@HA, the nanoparticle with a size of 168.6 nm also exhibits good tumor accumulation and biosafety. Significant inhibition of tumor cell growth was observed after two consecutive doses of S-COP@HA at relatively low laser densities. This combination therapy was proved to reduce the level of reduced glutathione in tumor cells, where ferroptosis occurs after photodynamic treatment. Overall, this study presents a potent, good therapeutic option for the effective enhancement of photodynamic therapy by glutathione depletion.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Anna Zhang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Siyu Liu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Zhipeng Dong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Junkai Zhao
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Sun
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuxian Wei
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Dan Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Saifei Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Anping Yu
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Zhong Rui Li
- Electron Microbeam Analysis Laboratory University of Michigan Ann Arbor, Michigan 48109, United States
| | - Ran Yan
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wang
- Key Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
3
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
4
|
Peng Y, Liang S, Meng QF, Liu D, Ma K, Zhou M, Yun K, Rao L, Wang Z. Engineered Bio-Based Hydrogels for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313188. [PMID: 38362813 DOI: 10.1002/adma.202313188] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Immunotherapy represents a revolutionary paradigm in cancer management, showcasing its potential to impede tumor metastasis and recurrence. Nonetheless, challenges including limited therapeutic efficacy and severe immune-related side effects are frequently encountered, especially in solid tumors. Hydrogels, a class of versatile materials featuring well-hydrated structures widely used in biomedicine, offer a promising platform for encapsulating and releasing small molecule drugs, biomacromolecules, and cells in a controlled manner. Immunomodulatory hydrogels present a unique capability for augmenting immune activation and mitigating systemic toxicity through encapsulation of multiple components and localized administration. Notably, hydrogels based on biopolymers have gained significant interest owing to their biocompatibility, environmental friendliness, and ease of production. This review delves into the recent advances in bio-based hydrogels in cancer immunotherapy and synergistic combinatorial approaches, highlighting their diverse applications. It is anticipated that this review will guide the rational design of hydrogels in the field of cancer immunotherapy, fostering clinical translation and ultimately benefiting patients.
Collapse
Affiliation(s)
- Yuxuan Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Dan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Mengli Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|