1
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
2
|
Gupta P, Mallick B. miR-128-3p suppresses tumor growth and enhances chemosensitivity in tongue squamous cell carcinoma through MAP2K7 targeting. Mol Biol Rep 2024; 51:1107. [PMID: 39476205 DOI: 10.1007/s11033-024-10040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/21/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs), which are key players in cancer cell resistance to chemotherapy, notably target genes associated with drug resistance. While miRNA-128-3p is recognized for its involvement in various cancers, its specific role in tumorigenesis and cisplatin (CIS) resistance in tongue cancer remains unclear. Therefore, in the present study, we endeavoured to elucidate the significance of miR-128-3p in tongue squamous cell carcinoma (TSCC), shedding light on its intricate functions and underlying mechanisms. METHODS AND RESULTS We quantified the expression of miR-128-3p and its target genes using qRT-PCR, followed by a series of functional assays in vitro, such as proliferation and migration assays, flow cytometry analysis, and western blotting to unravel the mechanisms underlying the functions of miR-128-3p. Additionally, we validated the ability of miR-128-3p to target MAP2K7 genes through luciferase reporter assays. We observed that increased expression of miR-128-3p significantly inhibited TSCC cell migration, proliferation, and epithelial-mesenchymal transition (EMT), possibly by regulating MAP2K7 in the JNK/MAP kinase pathway through miRNA target binding. Furthermore, we showed that increased miR-128-3p levels enhanced the sensitivity of TSCC cells to CIS through the JNK/c-Jun cascade. We observed that miR-128-3p reduces the expression of c-Jun and ABC transporter genes by targeting MAP2K7, affecting JNK1/2. This inhibition possibly decreases drug efflux and thus enhances the TSCC sensitivity to CIS treatment. CONCLUSIONS Our findings demonstrate oncosuppressive behaviour of miR-128-3p, which also potentially enhances the sensitivity of TSCC cells to CIS by suppressing MAP2K7 and JNK1/2, leading to evasion of apoptosis.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Biswal P, Lalruatfela A, Behera SK, Biswal S, Mallick B. miR-203a-A multifaceted regulator modulating cancer hallmarks and therapy response. IUBMB Life 2024; 76:108-124. [PMID: 37792370 DOI: 10.1002/iub.2786] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs of about 19-25 nucleotides, which serve as critical modulators of various cellular and biological processes by target gene regulation. Dysregulated expression of miRNAs modulates the pathophysiology of various human diseases, including cancer. Among miRNAs, miR-203a is one of the most extensively researched dysregulated miRNAs in different cancers. Our review investigated the roles of miR-203a in the hallmarks of cancer modulating different pathways through target gene regulations, chemoresistance, its crosstalk with other ncRNAs or genes in terms of ceRNAs impacting oncogenesis, and its potential applications in the diagnosis, prognosis, and chemotherapeutic responses in different cancer types. miR-203a impacts cancer cell behavior by regulating these exclusive hallmarks- sustaining proliferation, cell growth, invasion and metastasis, cell death, and angiogenesis. Besides, miR-203a is found in human circulating biofluids like plasma or serum of colorectal cancer, cervical cancer, and hepatocellular carcinoma, hinting at its potential as a biomarker. Further, miR-203a is involved in enhancing the chemosensitivity of cisplatin, docetaxel, paclitaxel, doxorubicin, and 5-fluorouracil in a variety of malignancies through their cognate target genes. These results suggest that miR-203a is a crucial multifaceted miRNA that controls cancer cell proliferation, metastasis, and chemotherapy response, shedding new light on its possible application.
Collapse
Affiliation(s)
- Priyajit Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Anthony Lalruatfela
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subham Kumar Behera
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Sruti Biswal
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
4
|
Shirai Y, Ueno T, Kojima S, Ikeuchi H, Kitada R, Koyama T, Takahashi F, Takahashi K, Ichimura K, Yoshida A, Sugino H, Mano H, Narita Y, Takahashi M, Kohsaka S. The development of a custom RNA-sequencing panel for the identification of predictive and diagnostic biomarkers in glioma. J Neurooncol 2024; 167:75-88. [PMID: 38363490 PMCID: PMC10978676 DOI: 10.1007/s11060-024-04563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.
Collapse
Affiliation(s)
- Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
5
|
Chattopadhyay T, Mallick B. FDFT1 repression by piR-39980 prevents oncogenesis by regulating proliferation and apoptosis through hypoxia in tongue squamous cell carcinoma. Life Sci 2023; 329:121954. [PMID: 37473805 DOI: 10.1016/j.lfs.2023.121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
AIM Tongue squamous cell carcinoma (TSCC) is one of the most aggressive tumors whose underlying molecular mechanism remains elusive. Previous studies have identified piR-39980, a non-coding RNA, as a tumour suppressor or oncogene in different malignancies and the cholesterogenic protein, Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1) playing critical roles in cancer. The present study investigates the role of piR-39980, and its target FDFT1, in regulating the malignancy of TSCC. MAIN METHODS We performed qRT-PCR to determine the expression of FDFT1, piR-39980 and validated FDFT1 as a target of piR-39980 by dual luciferase assay. Then, to investigate the role of FDFT1 overexpression and piR-39980's inhibitory effect on FDFT1 in TSCC oncogenesis, we carried out MTT, migration, ROS estimation, and flow cytometric cell cycle assays. In addition to the above experiments, we also carried out flow cytometric apoptosis assay, chromatin condensation, γ-H2AX accumulation, and phalloidin staining assays upon overexpression and silencing of piRNA to unveil its mechanism of actions in TSCC malignancy. KEY FINDINGS FDFT1 promotes the oncogenesis of TSCC cells. Further, transient overexpression of piR-39980 significantly inhibited proliferation, migration, ROS generation, and colony formation and increased DNA damage and chromatin condensation causing cell death by repressing FDFT1. We conjectured that FDFT1 repression induces hypoxia, which slows DNA repair and accumulates damaged DNA, causing death of TSCC cells. SIGNIFICANCE Our study showed FDFT1 acts as an oncogene in TSCC, unlike other cancers, whose repression by a piRNA could prevent oncogenesis by regulating proliferation and apoptosis through hypoxia. This study reveals novel gene-regulatory mechanistic insights into TSCC oncogenesis.
Collapse
Affiliation(s)
- Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|