1
|
Gandia D, Marcano L, Gandarias L, G. Gubieda A, García-Prieto A, Fernández Barquín L, Espeso JI, Martín Jefremovas E, Orue I, Abad Diaz de Cerio A, Fdez-Gubieda ML, Alonso J. Exploring the Complex Interplay of Anisotropies in Magnetosomes of Magnetotactic Bacteria. ACS OMEGA 2025; 10:16061-16072. [PMID: 40321550 PMCID: PMC12044567 DOI: 10.1021/acsomega.4c09371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 05/08/2025]
Abstract
Magnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, Magnetovibrio blakemorei and Magnetospirillum gryphiswaldense MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe3O4) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with M. blakemorei exhibiting ∼25 kJ/m3 and M. gryphiswaldense ∼ 11 kJ/m3. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (M vs T, 5 mT) and magnetic field (M vs μ0 H, up to 1 T). Above the Verwey transition temperature (∼110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for M. blakemorei by up to twofold compared to M. gryphiswaldense. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner-Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22-24 kJ/m3 at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.
Collapse
Affiliation(s)
- David Gandia
- Departamento
de Ciencias, Universidad Pública
de Navarra, Pamplona 31006, Spain
| | - Lourdes Marcano
- Departamento
de Física, Universidad de Oviedo, Oviedo 33007, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| | - Lucía Gandarias
- Departamento
de Inmunología, Microbiología
y Parasitología, Universidad del País Vasco
(UPV/EHU), Leioa 48940, Spain
- Aix-Marseille
Institute of Biosciences and Biotechnologies (BIAM), Aix-Marseille Université, CNRS, CEA − UMR 7265, Saint-Paul-lez-Durance 13108, France
| | - Alicia G. Gubieda
- Departamento
de Inmunología, Microbiología
y Parasitología, Universidad del País Vasco
(UPV/EHU), Leioa 48940, Spain
| | - Ana García-Prieto
- Departamento
de Física Aplicada, Universidad
del País Vasco (UPV/EHU), Bilbao 48013, Spain
| | | | | | - Elizabeth Martín Jefremovas
- Institute
of Physics, Johannes Gutenberg University
of Mainz, Mainz 55128, Germany
- Department
of Physics and Materials Science, University
of Luxembourg, Luxembourg L-1511, Grand Duchy
of Luxembourg
- Institute
for Advanced Studies, University of Luxembourg, Esch-sur-Alzette L-4365, Luxembourg
| | - Iñaki Orue
- SGIker, Universidad del País Vasco (UPV/EHU), Leioa 48940, Spain
| | - Ana Abad Diaz de Cerio
- Departamento
de Inmunología, Microbiología
y Parasitología, Universidad del País Vasco
(UPV/EHU), Leioa 48940, Spain
| | - Ma Luisa Fdez-Gubieda
- Departamento
de Electricidad y Electrónica, Universidad
del País Vasco (UPV/EHU), Leioa 48940, Spain
| | - Javier Alonso
- Departamento
de CITIMAC, Universidad de Cantabria, Santander 39005, Spain
| |
Collapse
|
2
|
Yadav VK, Pramanik S, Alghamdi S, Atwah B, Qusty NF, Babalghith AO, Solanki VS, Agarwal N, Gupta N, Niazi P, Patel A, Choudhary N, Zairov R. Therapeutic Innovations in Nanomedicine: Exploring the Potential of Magnetotactic Bacteria and Bacterial Magnetosomes. Int J Nanomedicine 2025; 20:403-444. [PMID: 39816378 PMCID: PMC11734620 DOI: 10.2147/ijn.s462031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features. MTB and magnetosomes have gained popularity in cancer treatment and diagnosis, especially in magnetic resonance imaging. Distinctive features highlighted include advancements in extraction, characterization, and functionalization techniques, alongside breakthroughs in utilizing MTB-based magnetosomes as contrast agents in imaging, biocompatible drug carriers, and tools for minimally invasive therapies. The biocompatible nature, functionalizing of the surface of bacterial magnetosomes, and response to the external magnetic field make them a potential candidate for the theragnostic purpose of MTB and magnetosomes. In the present review, emphasis has been given to the foundation of magnetosomes at a genetic level, mass production of magnetosomes, etc. Further authors have reviewed the various functionalization methods of the magnetosomes for cancer treatment. Finally, the authors have reviewed the recent advancements in MTB and magnetosome-based cancer detection, diagnosis, and treatment. Challenges such as scalability, long-term safety, and clinical translation are also discussed, presenting a roadmap for future research exploiting MTBs and magnetosomes' unique properties.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Banan Atwah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vijendra Singh Solanki
- Department of Chemistry, Institute of Science and Research (ISR), IPS Academy, Indore, India
| | - Neha Agarwal
- Department of Chemistry, Navyug Kanya Mahavidyalaya, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Nishant Gupta
- Department of Engineering and Medical Devices, River Engineering Pvt Ltd, Ecotech-III, Greater Noida, U.p., India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Nisha Choudhary
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rustem Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center RAS, Kazan, Russian Federation
- Aleksander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
3
|
Hu J, Liu M, Li L, Hu J, Wang C. Assessing the effects of NapA gene overexpression on denitrification and denitrogenation in magnetospirillum gryphiswaldense MSR-1. Arch Microbiol 2024; 206:439. [PMID: 39425777 DOI: 10.1007/s00203-024-04158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Previous research on Magnetospirillum gryphiswaldense MSR-1 found that MSR-1 has a good denitrification nitrogen removal ability and specific application prospects in the sewage biological nitrogen removal field. Therefore, this study selected the essential denitrification gene NapA in MSR-1-wt for overexpression, and the overexpressed MSR-1-NapA was successfully constructed. Q-PCR amplification experiment and AGAR gel electrophoresis experiment proved that the relative transcription level of the NapA gene was increased by more than four times, and the denitrification ability of MSR-1-wt and MSR-1-NapA was further determined by enzyme activity experiment, denitrification experiment, and flow cytometry. The results showed that overexpression of the NapA gene increased nitrate reductase activity in MSR-1-NapA by more than four times. In the solution with a nitrate concentration of 118.33 ± 3.23 mgN/L, the denitrification efficiency of MSR-1-NapA was superior to that of MSR-1-wt, significantly enhancing both the denitrification and nitrogen removal capacities of MSR-1. This indicates its greater potential for biological nitrogen removal in wastewater treatment.
Collapse
Affiliation(s)
- Jiawei Hu
- College of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| | - Meijing Liu
- College of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Lu Li
- Key Laboratory of Biotherapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Jinjing Hu
- Key Laboratory of Biotherapy and Regenerative Medicine Transformation Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Cong Wang
- College of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
4
|
Marqués-Marchán J, Jaafar M, Ares P, Gubieda AG, Berganza E, Abad A, Fdez-Gubieda ML, Asenjo A. Magnetic imaging of individual magnetosome chains in magnetotactic bacteria. BIOMATERIALS ADVANCES 2024; 163:213969. [PMID: 39059114 DOI: 10.1016/j.bioadv.2024.213969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
While significant advances have been made in exploring and uncovering the promising potential of biomagnetic materials, persistent challenges remain on various fronts, notably in the characterization of individual elements. This study makes use of advanced modes of Magnetic Force Microscopy (MFM) and tailored MFM probes to characterize individual magnetotactic bacteria in different environments. The characterization of these elements posed a significant challenge, as the magnetosomes, besides presenting low magnetic signal, are embedded in bacteria of much larger size. To overcome this, customed Atomic Force Microscopy probes are developed through various strategies, enhancing sensitivity in different environments, including liquids. Furthermore, employing MFM imaging under an in-situ magnetic field provides an opportunity to gather quantitative data regarding the critical fields of these individual chains of nanoparticles. This approach marks a substantial advancement in the field of MFM for biological applications, enabling the detection of magnetosomes under different conditions.
Collapse
Affiliation(s)
| | - Miriam Jaafar
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; Dpto. de Física de la Materia Condensada and IFIMAC, UAM, 28049 Madrid, Spain
| | - Pablo Ares
- Dpto. de Física de la Materia Condensada and IFIMAC, UAM, 28049 Madrid, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Eider Berganza
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Ana Abad
- Dpto. Inmunología, Microbiología y Parasitología, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - María Luisa Fdez-Gubieda
- Dpto. Electricidad y Electrónica, University of Basque Country (UPV/EHU), 48940 Leioa, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Spain
| | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain.
| |
Collapse
|
5
|
Gandarias L, Jefremovas EM, Gandia D, Marcano L, Martínez-Martínez V, Ramos-Cabrer P, Chevrier DM, Valencia S, Fernández Barquín L, Fdez-Gubieda ML, Alonso J, García-Prieto A, Muela A. Incorporation of Tb and Gd improves the diagnostic functionality of magnetotactic bacteria. Mater Today Bio 2023; 20:100680. [PMID: 37304575 PMCID: PMC10250929 DOI: 10.1016/j.mtbio.2023.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Magnetotactic bacteria are envisaged as potential theranostic agents. Their internal magnetic compass, chemical environment specificity and natural motility enable these microorganisms to behave as nanorobots, as they can be tracked and guided towards specific regions in the body and activated to generate a therapeutic response. Here we provide additional diagnostic functionalities to magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 while retaining their intrinsic capabilities. These additional functionalities are achieved by incorporating Tb or Gd in the bacteria by culturing them in Tb/Gd supplemented media. The incorporation of Tb provides luminescence properties, enabling potential applications of bacteria as biomarkers. The incorporation of Gd turns bacteria into dual contrast agents for magnetic resonance imaging, since Gd adds T1 contrast to the existing T2 contrast of unmodified bacteria. Given their potential clinical applications, the diagnostic ability of the modified MSR-1 has been successfully tested in vitro in two cell models, confirming their suitability as fluorescent markers (Tb-MSR-1) and dual contrast agents for MRI (Gd-MSR-1).
Collapse
Affiliation(s)
- Lucía Gandarias
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), Leioa, 48940, Spain
| | - Elizabeth M. Jefremovas
- CITIMAC, Universidad de Cantabria, Santander, 39005, Spain
- Institut für Physik, Johannes Gutenberg Universität, Mainz, 55128, Germany
| | - David Gandia
- BCMaterials, Bld. Martina Casiano 3rd Floor, Leioa, 48940, Spain
| | - Lourdes Marcano
- Dpto. Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa, 48940, Spain
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-str. 15, Berlin, 12489, Germany
- Department of Physics, Faculty of Science, University of Oviedo, Oviedo, 33007, Spain
| | | | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Daniel M. Chevrier
- Aix-Marseille Université, Centre national de la recherche scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), UMR7265, Bioscience and biotechnology institute of Aix-Marseille (BIAM), Saint-Paul-lez-Durance, 13108, France
| | - Sergio Valencia
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-str. 15, Berlin, 12489, Germany
| | | | - M. Luisa Fdez-Gubieda
- BCMaterials, Bld. Martina Casiano 3rd Floor, Leioa, 48940, Spain
- Dpto. Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa, 48940, Spain
| | - Javier Alonso
- CITIMAC, Universidad de Cantabria, Santander, 39005, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco (UPV/EHU), Bilbao, 48013, Spain
| | - Alicia Muela
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), Leioa, 48940, Spain
| |
Collapse
|
6
|
Gandia D, Marcano L, Gandarias L, Villanueva D, Orue I, Abrudan RM, Valencia S, Rodrigo I, Ángel García J, Muela A, Fdez-Gubieda ML, Alonso J. Tuning the Magnetic Response of Magnetospirillum magneticum by Changing the Culture Medium: A Straightforward Approach to Improve Their Hyperthermia Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023; 15:566-577. [PMID: 36563339 PMCID: PMC9982817 DOI: 10.1021/acsami.2c18435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Magnetotactic bacteria Magnetospirillum magneticum AMB-1 have been cultured using three different media: magnetic spirillum growth medium with Wolfe's mineral solution (MSGM + W), magnetic spirillum growth medium without Wolfe's mineral solution (MSGM - W), and flask standard medium (FSM). The influence of the culture medium on the structural, morphological, and magnetic characteristics of the magnetosome chains biosynthesized by these bacteria has been investigated by using transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. All bacteria exhibit similar average size for magnetosomes, 40-45 nm, but FSM bacteria present slightly longer subchains. In MSGM + W bacteria, Co2+ ions present in the medium substitute Fe2+ ions in octahedral positions with a total Co doping around 4-5%. In addition, the magnetic response of these bacteria has been thoroughly studied as functions of both the temperature and the applied magnetic field. While MSGM - W and FSM bacteria exhibit similar magnetic behavior, in the case of MSGM + W, the incorporation of the Co ions affects the magnetic response, in particular suppressing the Verwey (∼105 K) and low temperature (∼40 K) transitions and increasing the coercivity and remanence. Moreover, simulations based on a Stoner-Wolhfarth model have allowed us to reproduce the experimentally obtained magnetization versus magnetic field loops, revealing clear changes in different anisotropy contributions for these bacteria depending on the employed culture medium. Finally, we have related how these magnetic changes affect their heating efficiency by using AC magnetometric measurements. The obtained AC hysteresis loops, measured with an AC magnetic field amplitude of up to 90 mT and a frequency, f, of 149 kHz, reveal the influence of the culture medium on the heating properties of these bacteria: below 35 mT, MSGM - W bacteria are the best heating mediators, but above 60 mT, FSM and MSGM + W bacteria give the best heating results, reaching a maximum heating efficiency or specific absorption rate (SAR) of SAR/f ≈ 12 W g-1 kHz-1.
Collapse
Affiliation(s)
- David Gandia
- Basque
Center for Materials Applications and Nanostructures (BCMaterials)
UPV/EHU Science Park Leioa, Leioa48940, Spain
| | - Lourdes Marcano
- Departmento
de Física, Facultad de Ciencias,
Universidad de Oviedo, Oviedo33007, Spain
| | - Lucía Gandarias
- Departamento
de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Danny Villanueva
- Departamento
de Electricidad y Electrónica, Universidad
del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Iñaki Orue
- SGIker
Medidas Magnéticas, Universidad del
País Vasco (UPV/EHU), Leioa48940, Spain
| | - Radu Marius Abrudan
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Street 15, Berlin12489, Germany
| | - Sergio Valencia
- Helmholtz-Zentrum
Berlin für Materialien und Energie, Albert-Einstein-Street 15, Berlin12489, Germany
| | - Irati Rodrigo
- Departamento
Física Aplicada, Universidad del
País Vasco (UPV/EHU), Eibar20600, Spain
| | - José Ángel García
- Departamento
Física Aplicada, Universidad del
País Vasco (UPV/EHU), Leioa48940, Spain
| | - Alicia Muela
- Departamento
de Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Ma Luisa Fdez-Gubieda
- Basque
Center for Materials Applications and Nanostructures (BCMaterials)
UPV/EHU Science Park Leioa, Leioa48940, Spain
- Departamento
de Electricidad y Electrónica, Universidad
del País Vasco (UPV/EHU), Leioa48940, Spain
| | - Javier Alonso
- Departamento
CITIMAC, Universidad de Cantabria, Santander39005, Spain
| |
Collapse
|