1
|
Friggeri G, Moretti I, Amato F, Marrani AG, Sciandra F, Colombarolli SG, Vitali A, Viscuso S, Augello A, Cui L, Perini G, De Spirito M, Papi M, Palmieri V. Multifunctional scaffolds for biomedical applications: Crafting versatile solutions with polycaprolactone enriched by graphene oxide. APL Bioeng 2024; 8:016115. [PMID: 38435469 PMCID: PMC10908559 DOI: 10.1063/5.0184933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
The pressing need for multifunctional materials in medical settings encompasses a wide array of scenarios, necessitating specific tissue functionalities. A critical challenge is the occurrence of biofouling, particularly by contamination in surgical environments, a common cause of scaffolds impairment. Beyond the imperative to avoid infections, it is also essential to integrate scaffolds with living cells to allow for tissue regeneration, mediated by cell attachment. Here, we focus on the development of a versatile material for medical applications, driven by the diverse time-definite events after scaffold implantation. We investigate the potential of incorporating graphene oxide (GO) into polycaprolactone (PCL) and create a composite for 3D printing a scaffold with time-controlled antibacterial and anti-adhesive growth properties. Indeed, the as-produced PCL-GO scaffold displays a local hydrophobic effect, which is translated into a limitation of biological entities-attachment, including a diminished adhesion of bacteriophages and a reduction of E. coli and S. aureus adhesion of ∼81% and ∼69%, respectively. Moreover, the ability to 3D print PCL-GO scaffolds with different heights enables control over cell distribution and attachment, a feature that can be also exploited for cellular confinement, i.e., for microfluidics or wound healing applications. With time, the surface wettability increases, and the scaffold can be populated by cells. Finally, the presence of GO allows for the use of infrared light for the sterilization of scaffolds and the disruption of any bacteria cell that might adhere to the more hydrophilic surface. Overall, our results showcase the potential of PCL-GO as a versatile material for medical applications.
Collapse
Affiliation(s)
| | - I. Moretti
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - F. Amato
- Dipartimento di Chimica, Università di Roma “La Sapienza,” p.le A. Moro 5, I-00185 Roma, Italy
| | - A. G. Marrani
- Dipartimento di Chimica, Università di Roma “La Sapienza,” p.le A. Moro 5, I-00185 Roma, Italy
| | - F. Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - S. G. Colombarolli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - A. Vitali
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | - S. Viscuso
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”-SCITEC (CNR), C/O Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168-Roma, Italy
| | | | - L. Cui
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | | | - M. De Spirito
- Authors to whom correspondence should be addressed: and
| | - M. Papi
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
2
|
Romo-Ávila SL, Márquez-Ruíz D, Guirado-López RA. ClO-driven degradation of graphene oxide: new insights from DFT calculations. Phys Chem Chem Phys 2024; 26:830-841. [PMID: 38099823 DOI: 10.1039/d3cp04015a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
We present an extensive investigation using density functional theory (DFT) calculations on various model graphene oxide (GO) nanostructures interacting with chlorine monoxide ClO, aiming to understand the role of this highly oxidizing species in C-C bond breakage and the formation of significant holes on GO sheets. During its function, the myeloperoxidase (MPO) enzyme abundantly generates chlorine-oxygen-containing species and their presence has been identified as the cause of degradation in carbon nanotubes of diverse sizes, morphologies, and chemical compositions, both in in vivo and in vitro samples. Notably, Kurapati et al. (Small, 2015, 11, 3985-3994) demonstrated efficient degradation of single GO monolayers through MPO catalysis, though the exact degradation mechanism remains unclear. In our study, we discover that breaking C-C bonds in a single graphene oxide sheet is achievable through a simple mechanism involving the dissociation of two ClO molecules that are chemically attached as nearest neighbor species but bonded to opposite sides of the GO layer (up/down configuration). Two new carbonyl oxygens appear on the surface and the Cl atoms can be transferred to the carbon layer or as physisorbed species near the GO surface. Relatively small energy barriers are associated with these molecular events. Continuing this process on neighboring sites leads to the presence of larger holes on the GO surface, accompanied by an increase in carbonyl species on the carbon network, consistent with X-ray photoelectron spectroscopy measurements. Indeed, the distribution of oxygen functionalities is found to be crucial in defining the damage pattern induced in the carbon layer. We emphasize the important role played by the local charge distribution in the stability or instability of chemical bonds, as well as in the energy barriers and reaction pathways. Finally, we explore the possibility of achieving chlorination of GO following MPO exposure. The here-reported predictions could be the root cause of the experimentally observed low stability of individual GO sheets during the MPO catalytic cycle.
Collapse
Affiliation(s)
- S L Romo-Ávila
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - D Márquez-Ruíz
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| | - R A Guirado-López
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, San Luis Potosí, SLP, 78000, Mexico.
| |
Collapse
|
3
|
Amato F, Ferrari I, Motta A, Zanoni R, Dalchiele EA, Marrani AG. Assessing the evolution of oxygenated functional groups on the graphene oxide surface upon mild thermal annealing in water. RSC Adv 2023; 13:29308-29315. [PMID: 37809030 PMCID: PMC10557050 DOI: 10.1039/d3ra05083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023] Open
Abstract
Graphene oxide (GO) is known to be a 2D metastable nanomaterial that can be reconstructed under thermal annealing into distinct oxidized and graphitic phases. Up to now, such phase transformation, mainly related to epoxide and hydroxyl functional groups, has been usually achieved by thermally treating layers of GO in the solid state. Here, we present the mild annealing of GO dispersed in an aqueous medium, performed at two temperatures, 50 °C and 80 °C, for different intervals of time. We show experimental evidences of the epoxide instability in the presence of water by means of XPS, cyclic voltammetry and Raman spectroscopy, demonstrating the reorganization of epoxide and hydroxyl moieties initiated by water molecules. In fact, at 50 °C an increase in oxygen content is detected in all annealed samples compared to untreated GO, with a transformation of epoxide groups into vicinal diols. On the other hand, at 80 °C the oxygen content decreases towards the initial value since the vicinal diols, previously formed, transform into single hydroxyls and C[double bond, length as m-dash]C bonds. Moreover, the higher temperature annealing likely favours oxygenated functional groups rearrangements and clustering, in accordance with the literature, leading to a higher electron affinity and conductivity of the graphenic network.
Collapse
Affiliation(s)
- Francesco Amato
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| | - Irene Ferrari
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| | - Alessandro Motta
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
- Consorzio INSTM, UdR Roma "La Sapienza" Italy
| | - Robertino Zanoni
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| | - Enrique A Dalchiele
- Instituto de Física & CINQUIFIMA, Facultad de Ingeniería Julio Herrera y Reissig 565, C.C. 30 Montevideo 11000 Uruguay
| | - Andrea Giacomo Marrani
- Dipartimento di Chimica, Università di Roma "La Sapienza" p.le A. Moro 5 Rome I-00185 Italy
| |
Collapse
|
4
|
Hajareh Haghighi F, Binaymotlagh R, Chronopoulou L, Cerra S, Marrani AG, Amato F, Palocci C, Fratoddi I. Self-Assembling Peptide-Based Magnetogels for the Removal of Heavy Metals from Water. Gels 2023; 9:621. [PMID: 37623076 PMCID: PMC10454050 DOI: 10.3390/gels9080621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we present the synthesis of a novel peptide-based magnetogel obtained through the encapsulation of γ-Fe2O3-polyacrylic acid (PAA) nanoparticles (γ-Fe2O3NPs) into a hydrogel matrix, used for enhancing the ability of the hydrogel to remove Cr(III), Co(II), and Ni(II) pollutants from water. Fmoc-Phe (Fluorenylmethoxycarbonyl-Phenylalanine) and diphenylalanine (Phe2) were used as starting reagents for the hydrogelator (Fmoc-Phe3) synthesis via an enzymatic method. The PAA-coated magnetic nanoparticles were synthesized in a separate step, using the co-precipitation method, and encapsulated into the peptide-based hydrogel. The resulting organic/inorganic hybrid system (γ-Fe2O3NPs-peptide) was characterized with different techniques, including FT-IR, Raman, UV-Vis, DLS, ζ-potential, XPS, FESEM-EDS, swelling ability tests, and rheology. Regarding the application in heavy metals removal from aqueous solutions, the behavior of the obtained magnetogel was compared to its precursors and the effect of the magnetic field was assessed. Four different systems were studied for the separation of heavy metal ions from aqueous solutions, including (1) γ-Fe2O3NPs stabilized with PAA, (γ-Fe2O3NPs); (2) Fmoc-Phe3 hydrogel (HG); (3) γ-Fe2O3NPs embedded in peptide magnetogel (γ-Fe2O3NPs@HG); and (4) γ-Fe2O3NPs@HG in the presence of an external magnetic field. To quantify the removal efficiency of these four model systems, the UV-Vis technique was employed as a fast, cheap, and versatile method. The results demonstrate that both Fmoc-Phe3 hydrogel and γ-Fe2O3NPs peptide magnetogel can efficiently remove all the tested pollutants from water. Interestingly, due to the presence of magnetic γ-Fe2O3NPs inside the hydrogel, the removal efficiency can be enhanced by applying an external magnetic field. The proposed magnetogel represents a smart multifunctional nanosystem with improved absorption efficiency and synergic effect upon applying an external magnetic field. These results are promising for potential environmental applications of γ-Fe2O3NPs-peptide magnetogels to the removal of pollutants from aqueous media.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Andrea Giacomo Marrani
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Francesco Amato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (F.H.H.); (R.B.); (S.C.); (A.G.M.); (F.A.); (I.F.)
| |
Collapse
|