1
|
Abreu K, Viana JR, Oliveira Neto JG, Dias TG, Reis AS, Lage MR, da Silva LM, de Sousa FF, dos Santos AO. Exploring Thermal Stability, Vibrational Properties, and Biological Assessments of Dichloro(l-histidine)copper(II): A Combined Theoretical and Experimental Study. ACS OMEGA 2024; 9:43488-43502. [PMID: 39493995 PMCID: PMC11525524 DOI: 10.1021/acsomega.4c05029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Dichloro(l-histidine)copper(II) crystal ([Cu(l-His)Cl2] complex) was obtained by the slow evaporation method and characterized concerning its thermal stability, phase transformations, and electronic and vibrational properties. X-ray diffraction (XRPD) confirmed that this complex crystallizes with an orthorhombic structure (P212121 space group). Thermal analyses (TG and DTA) demonstrate stability from ambient temperature up to 460 K, followed by a phase transition from the orthorhombic structure to the amorphous form around 465 K, as confirmed by temperature-dependent XRPD studies. The active modes in Fourier transform infrared (FT-IR) and Raman spectroscopy spectra were suitably assigned via density functional theory (DFT) calculations. Additionally, Hirshfeld surface analysis uncovered the prominence of Cl···H, O···H, and H···H interactions as the primary intermolecular forces within the crystal structure. The antimicrobial activity of the [Cu(l-His)Cl2] complex was investigated, demonstrating significant efficacy against Gram-positive bacteria (Staphylococcus aureus), Gram-negative bacteria (Pseudomonas aeruginosa), and fungi (Candida albicans). The minimum inhibitory concentration and cell viability tests showed that the complex inhibits the growth of S. aureus bacteria at a concentration of 1.5 μM without causing damage to the human cell line. The pharmacokinetic parameters corroborate the other tested parameters and highlight the [Cu(l-His)Cl2] complex as a promising alternative for future clinical trials and medicinal applications. The alignment of the pharmacokinetic parameters with other tested criteria highlights the potential of the [Cu(l-His)Cl2] complex as a promising candidate for future clinical studies.
Collapse
Affiliation(s)
- Kamila
R. Abreu
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Jailton R. Viana
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - João G. Oliveira Neto
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Tatielle G. Dias
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Aramys S. Reis
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Mateus R. Lage
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Luzeli M. da Silva
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| | - Francisco F. de Sousa
- Institute
of Exact and Natural Sciences, Federal University
of Para (UFPA), 66075-110 Belem, PA, Brazil
| | - Adenilson O. dos Santos
- Center
for Sciences of Imperatriz, Federal University
of Maranhao (UFMA), 65900-410 Imperatriz, MA, Brazil
| |
Collapse
|
2
|
Singh S, Choudhary M. Unusual Ni⋯Ni interaction in Ni(ii) complexes as potential inhibitors for the development of new anti-SARS-CoV-2 Omicron drugs. RSC Med Chem 2024; 15:895-915. [PMID: 38516589 PMCID: PMC10953495 DOI: 10.1039/d3md00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/05/2024] [Indexed: 03/23/2024] Open
Abstract
Two nickel(ii) coordination complexes [Ni(L)]2(1) and [Ni(L)]n(2) of a tetradentate Schiff base ligand (H2L) derived from 2-hydroxy-1-naphthaldehyde with ethylenediamine were synthesized, designed, and characterized via spectroscopic and single crystal XRD analyses. Both nickel(ii) complexes exhibited unusual Ni⋯Ni interactions and were fully characterized via single-crystal X-ray crystallography. Nickel(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) crystallize in monoclinic and triclinic crystal systems with P21/c and P1̄ space groups, respectively, and revealed square planar geometry around each Ni(ii) ion. The structure of both the complexes have established the existence of a new kind of metal system containing nickel(ii)-nickel(ii) interactions with a square planar-like geometry about the nickel(ii) atoms. Both square planar Ni(ii) complexes were often stacked with relatively short Ni⋯Ni distances. The non-bonded Ni-Ni distance (Ni⋯Ni separation) seems to be 3.356 Å and 3.214 Å from the nickel atoms of [Ni(L)]2(1) and [Ni(L)]n(2), respectively. These distances are shorter than the sum of their van der Waals radii (4.80 Å) but longer than the sum of their covalent radii (2.50 Å), indicating that there is a Ni⋯Ni interaction but not a Ni-Ni bond. The discrete molecules are π-stacked and connected via weak intermolecular interactions (C-H⋯O and C-H⋯N). Cyclic voltammetry measurements were obtained for both the complexes, and their pharmacokinetic and chemoinformatics properties were also explored. Detailed structural analysis and non-covalent supramolecular interactions were investigated using single-crystal structure analysis and computational approaches. Both the unique structures show good inhibition performance for the Omicron spike proteins of the SARS CoV-2 virus. To gain insights into potential SARS-CoV-2 Omicron drugs and find inhibitors against the Omicron variants of SARS-CoV-2, we examined the molecular docking of the nickel(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) with the SARS-CoV-2 Omicron spike protein (PDB ID: 7WK2 and 7WVO). A strong binding was predicted between Ni(ii) coordination complexes [Ni(L)]2(1) and [Ni(L)]n(2) with the SARS-CoV-2 Omicron variant receptor protein through the negative value of binding affinity. Molecular docking of Nil(ii) complexes [Ni(L)]2(1) and [Ni(L)]n(2) with a DNA duplex (PDB ID: 7D3T) and RNA (PDB ID: 7TDC) binding protein was also studied. Overall, this study suggests that Ni(ii) complexes can be considered as drug candidates against the Omicron variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Chemistry, National Institute of Technology Patna Patna-800005 Bihar India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna Patna-800005 Bihar India
| |
Collapse
|
3
|
Bandyopadhyay SS, Halder AK, Saha S, Chatterjee P, Nasipuri M, Basu S. Assessment of GO-Based Protein Interaction Affinities in the Large-Scale Human-Coronavirus Family Interactome. Vaccines (Basel) 2023; 11:549. [PMID: 36992133 PMCID: PMC10059867 DOI: 10.3390/vaccines11030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 is a novel coronavirus that replicates itself via interacting with the host proteins. As a result, identifying virus and host protein-protein interactions could help researchers better understand the virus disease transmission behavior and identify possible COVID-19 drugs. The International Committee on Virus Taxonomy has determined that nCoV is genetically 89% compared to the SARS-CoV epidemic in 2003. This paper focuses on assessing the host-pathogen protein interaction affinity of the coronavirus family, having 44 different variants. In light of these considerations, a GO-semantic scoring function is provided based on Gene Ontology (GO) graphs for determining the binding affinity of any two proteins at the organism level. Based on the availability of the GO annotation of the proteins, 11 viral variants, viz., SARS-CoV-2, SARS, MERS, Bat coronavirus HKU3, Bat coronavirus Rp3/2004, Bat coronavirus HKU5, Murine coronavirus, Bovine coronavirus, Rat coronavirus, Bat coronavirus HKU4, Bat coronavirus 133/2005, are considered from 44 viral variants. The fuzzy scoring function of the entire host-pathogen network has been processed with ~180 million potential interactions generated from 19,281 host proteins and around 242 viral proteins. ~4.5 million potential level one host-pathogen interactions are computed based on the estimated interaction affinity threshold. The resulting host-pathogen interactome is also validated with state-of-the-art experimental networks. The study has also been extended further toward the drug-repurposing study by analyzing the FDA-listed COVID drugs.
Collapse
Affiliation(s)
- Soumyendu Sekhar Bandyopadhyay
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
- Department of Computer Science and Engineering, School of Engineering and Technology, Adamas University, Kolkata 700126, India
| | - Anup Kumar Halder
- Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Sovan Saha
- Department of Computer Science and Engineering (Artificial Intelligence and Machine Learning), Techno Main Salt Lake, Sector V, Kolkata 700091, India
| | - Piyali Chatterjee
- Department of Computer Science and Engineering, Netaji Subhash Engineering College, Kolkata 700152, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Aprajita, Choudhary M. New Ni(II) and Cu(II) Schiff base coordination complexes derived from 5-Bromo-salicylaldehyde and 3-picoyl amine/ethylenediamine: Synthesis, structure, Hirshfeld surface and molecular docking study with SARS-CoV-2 7EFP-main protease. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Kumar S, Choudhary M. New nickel( ii) Schiff base complexes as potential tools against SARS-CoV-2 Omicron target proteins: an in silico approach. NEW J CHEM 2023. [DOI: 10.1039/d2nj05136b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we report the in silico design and synthesis of two new nickel(ii) coordination complexes, based on Schiff bases derived from the 2-hydroxy-1-naphthaldehyde moiety.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| |
Collapse
|
6
|
An Integrated Analysis of Mechanistic Insights into Biomolecular Interactions and Molecular Dynamics of Bio-Inspired Cu(II) and Zn(II) Complexes towards DNA/BSA/SARS-CoV-2 3CL pro by Molecular Docking-Based Virtual Screening and FRET Detection. Biomolecules 2022; 12:biom12121883. [PMID: 36551312 PMCID: PMC9775322 DOI: 10.3390/biom12121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Novel constructed bioactive mixed-ligand complexes (1b) [CuII(L)2(phen)] and (2b) [ZnII(L)2(phen)] {where, L = 2-(4-morpholinobenzylideneamino)phenol), phen = 1,10-phenanthroline} have been structurally analysed by various analytical and spectroscopic techniques, including, magnetic moments, thermogravimetric analysis, and X-ray crystallography. Various analytical and spectral measurements assigned showed that all complexes appear to have an octahedral geometry. Agar gel electrophoresis's output demonstrated that the Cu(II) complex (1b) had efficient deoxyribonucleic cleavage and complex (2b) demonstrated the partial cleavage accomplished with an oxidation agent, which generates spreadable OH● through the Fenton type mechanism. The DNA binding constants observed from viscosity, UV-Vis spectral, fluorometric, and electrochemical titrations were in the following sequence: (1b) > (2b) > (HL), which suggests that the complexes (1b-2b) might intercalate DNA, a possibility that is supported by the biothermodynamic measurements. In addition, the observed binding constant results of BSA by electronic absorption and fluorometric titrations indicate that complex (1b) revealed the best binding efficacy as compared to complex (2b) and free ligand. Interestingly, all compounds are found to interact with BSA through a static approach, as further attested by FRET detection. The DFT and molecular docking calculations were also performed to realize the electronic structure, reactivity, and binding capability of all test samples with CT-DNA, BSA, and the SARS-CoV-2 3CLPro, which revealed the binding energies were in a range of -8.1 to -8.9, -7.5 to -10.5 and -6.7--8.8 kcal/mol, respectively. The higher reactivity of the complexes than the free ligand is supported by the FMO theory. Among all the observed data for antioxidant properties against DPPH᛫, ᛫OH, O2-• and NO᛫ free radicals, complex (1a) had the best biological efficacy. The antimicrobial and cytotoxic characteristics of all test compounds have been studied by screening against certain selected microorganisms as well as against A549, HepG2, MCF-7, and NHDF cell lines, respectively. The observed findings revealed that the activity enhances coordination as compared to free ligand via Overtone's and Tweedy's chelation mechanisms. This is especially encouraging given that in every case, the experimental findings and theoretical detections were in perfect accord.
Collapse
|
7
|
Aprajita, Choudhary M. Design, synthesis and characterization of novel Ni(II) and Cu(II) complexes as antivirus drug candidates against SARS-CoV-2 and HIV virus. J Mol Struct 2022; 1263:133114. [PMID: 35465175 PMCID: PMC9017811 DOI: 10.1016/j.molstruc.2022.133114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 12/16/2022]
Abstract
This paper describes the structure-based design, synthesis and anti-virus effect of two new coordination complexes, a Ni(II) complex [Ni(L)2] (1) and a Cu(II) complex [Cu(L)2] (2) of (E)-N-phenyl-2-(thiophen-2-ylmethylene) hydrazine-1-carbothioamide(HL). The synthesized ligand was coordinated to metal ions through the bidentate-N, S donor atoms. The newly synthesized complexes were characterized by various spectroscopic and physiochemical methods, powdered XRD analysis and also X-ray crystallography study. Ni(II) complex [Ni(L)2](1) crystallize in orthorhombic crystal system with the space group Pbca with four molecules in the unit cell (a = 9.857(3) Å, b = 7.749(2) Å, c = 32.292(10) Å, α = 90°, β = 90°, γ = 90°, Z= 4) and reveals a distorted square planar geometry. A Hirshfeld surface and 2D fingerprint plot has been explored in the crystal structure of Ni(II) complex [Ni(L)2] (1). Energy framework computational analysia has also been explored. DFT based calculations have been performed on the Schiff base and its metal complexes to study the structure-property relationship. Furthermore, the molecular docking studies of the ligand and its metal complexes with SARS-CoV-2 virus (PDB ID: 7BZ5) and HIV-1 virus (PDB ID: 6MQA) are also investigated. The molecular docking calculations of the Ni(II) complex [Ni(L)2] (1) and a Cu(II) complex [Cu(L)2] (2) with SARS-CoV-2 virus revealed that the binding affinities at inhibition binding site of receptor protein are 9.7 kcal/mol and -9.3 kcal/mol, respectively. The molecular docking results showed that the binding affinities of Ni(II) complex (1) and Cu(II) complex (2) against SARS-CoV-2 virus were found comparatively higher than the HIV-1 virus (-8.5 kcal/mol and -8.2 kcal/mol, respectively). As potential drug candidates, Swiss-ADME predictions analyses are also studied and the results are compared with Chloroquine (CQ) and Hydroxychloroquine (HCQ) as anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Aprajita
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, Bihar 800005, India
| |
Collapse
|
8
|
Chai J, Yuan L, Wang S, Li T, Wu M, Huang Z, Yin H. A series of novel Cu-based MOFs: syntheses, structural diversity, catalytic properties and mimic peroxidase activity for colorimetric detection of H 2O 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj01981g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three MOFs with three different types of Cu clusters have been synthesized. MOFs 1–3 efficiently catalyze the oxidation of cycloalkanes under mild conditions. Besides, MOFs 1–3 exhibited high peroxidase-like activity and could be applied for colorimetric detection of H2O2.
Collapse
Affiliation(s)
- Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Luohao Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Mingxue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhiwei Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|
9
|
Kumar S, Choudhary M. Structure-based design and synthesis of copper( ii) complexes as antivirus drug candidates targeting SARS CoV-2 and HIV. NEW J CHEM 2022. [DOI: 10.1039/d2nj00703g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the structure-based design and synthesis of two novel square-planar trans-N2O2 Cu(ii) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) of 2-((Z)-(4-methoxyphenylimino)methyl)-4,6-dichlorophenol (L1H) and 2-((Z)-(2,4-dibromophenylimino)methyl)-4-bromophenol (L2H) as potential inhibitors against the main protease of the SARS-CoV-2 and HIV viruses.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna-800005, Bihar, India
| |
Collapse
|