1
|
Jain N, Puri NK. A proposed device based on MoSe 2-ZnO heterojunctions on rGO for enhanced ethanol gas sensing performances at room temperature. NANOTECHNOLOGY 2024; 35:405502. [PMID: 38941983 DOI: 10.1088/1361-6528/ad5cf9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
In this research, we report an enhanced sensing response ethanol gas sensing device based on a ternary nanocomposite of molybdenum diselenide-zinc oxide heterojunctions decorated rGO (MoSe2/ZnO/rGO) at room temperature. The sensing performance of the ternary nanocomposite sensing device has been analysed for various concentrations of ethanol gas (1-500 ppm). The gas-sensing results have revealed that for 500 ppm ethanol gas concentration, the sensing device has exhibited an enhanced response value(Rg/Ra)of 50.2. Significantly, the sensing device has displayed a quick response and recovery time of 6.2 and 12.9 s respectively. In addition to this, the sensing device has shown a great prospect for long-term detection of ethanol gas (45 days). The sensing device has demonstrated the ability to detect ethanol at remarkably low concentrations of 1 ppm. The enhanced sensing performance of the ternary nanocomposite sensing device has highlighted the effective synergistic effect between MoSe2nanosheets, ZnO nanorods, and rGO nanosheets. This has been attributed to the formation of two heterojunctions in the ternary nanocomposite sensor: a p-n heterojunction between MoSe2and ZnO and a p-p heterojunction between MoSe2and rGO. The analysis of the results has suggested that the proposed MoSe2/ZnO/rGO nanocomposite sensing device could be considered a promising candidate for the real-time detection of ethanol gas.
Collapse
Affiliation(s)
- Nikita Jain
- Nanomaterials Research Laboratory (NRL), Department of Applied Physics, Delhi Technological University, Delhi 110042, India
| | - Nitin K Puri
- Nanomaterials Research Laboratory (NRL), Department of Applied Physics, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
2
|
Regiart M, Fernández-Baldo MA, Navarrete BA, Morales García C, Gómez B, Tortella GR, Valero T, Ortega FG. Five years of advances in electrochemical analysis of protein biomarkers in lung cancer: a systematic review. Front Chem 2024; 12:1390050. [PMID: 38764920 PMCID: PMC11099832 DOI: 10.3389/fchem.2024.1390050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024] Open
Abstract
Lung cancer is the leading cause of cancer death in both men and women. It represents a public health problem that must be addressed through the early detection of specific biomarkers and effective treatment. To address this critical issue, it is imperative to implement effective methodologies for specific biomarker detection of lung cancer in real clinical samples. Electrochemical methods, including microfluidic devices and biosensors, can obtain robust results that reduce time, cost, and assay complexity. This comprehensive review will explore specific studies, methodologies, and detection limits and contribute to the depth of the discussion, making it a valuable resource for researchers and clinicians interested in lung cancer diagnosis.
Collapse
Affiliation(s)
- Matías Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Martín A. Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis, CONICET, San Luis, Argentina
| | - Bernardino Alcázar Navarrete
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - Concepción Morales García
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Beatriz Gómez
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Teresa Valero
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of “Chemistry Applied to Biomedicine and the Environment”, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Gabriel Ortega
- IBS Granada, Institute of Biomedical Research, Granada, Spain
- Pulmonology Unit, Hospital Universitario Virgen de las Nieves, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
- UGC Cartuja, Distrito Sanitario Granada Metropolitano, Granada, Spain
| |
Collapse
|
3
|
Huang J, Wei F, Cui Y, Hou L, Lin T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv 2022; 12:31369-31379. [PMID: 36349017 PMCID: PMC9624183 DOI: 10.1039/d2ra04989a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
An immunosensor is defined as an analytical device that detects the binding of an antigen to its specific antibody by coupling an immunochemical reaction to the surface of a device called a transducer. Fluorescence immunosensing is one of the most promising immunoassays at present, and has the advantages of simple operation, fast response and high stability. A traditional fluorescence immunosensor often uses an enzyme-labelled antibody as a recognition unit and an organic dye as a fluorescence probe, so it is easily affected by environmental factors with low sensitivity. Nanomaterials have unique photostability, catalytic properties and biocompatibility, which open up a new path for the construction of stable and sensitive fluorescence immunosensors. This paper briefly introduces different kinds of immunosensors and the role of nanomaterials in the construction of immunosensors. The significance of fluorescent immunosensors constructed from functional nanomaterials to detect tumor biomarkers was analyzed, and the strategies to further improve the performance of fluorescent immunosensors and their future development trend were summarized.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Fenghuang Wei
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Yuling Cui
- Jinan Center for Food and Drug Control Jinan 250102 Shandong China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|