1
|
Liu Y, Yao Y, Sha J, Liang G, Sun X. Dual-Locked Enzyme-Activatable Fluorescence Probes for Precise Bioimaging. ACS Biomater Sci Eng 2025; 11:730-741. [PMID: 39841057 DOI: 10.1021/acsbiomaterials.4c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Real-time visualization of endogenous enzymes not only helps reveal the underlying biological principles but also provides pathological information for cancer/disease diagnosis and even treatment guidance. To this end, enzyme-activatable fluorescence probes are frequently fabricated that turn their fluorescence signals "on" exclusively at the enzyme-rich region, thus enabling noninvasive and real-time imaging of enzymes of interest at the molecular level with superior sensitivity and selectivity. However, in a complex biological context, commonly used single enzyme-activatable (i.e., single-locked) probes may suffer from "false positive" signals at healthy tissues and be insufficient to accurately indicate the occurrence of certain diseases. Therefore, dual-locked fluorescence probes have been promoted to address these issues. Using dual enzymes (or an enzyme with another stimulus) as "keys", they permit simultaneous detection of distinct biomarkers, offering significantly enhanced imaging precision toward certain biological events. Considering that recent reviews on these probes remain scarce, we thus provide this review. We summarize the recent progress, particularly highlighting the breakthroughs in the last three years, and discuss the challenges in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Yuchen Yao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| | - Junhui Sha
- School of Life Science and Technology, Southeast University, Nanjing 211189, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
- Handan Norman Technology Company, Limited, Guantao 057750, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Zhong Y, Li B, Xin H, Wang C. Endogenous mRNA-Driven "One-To-More" Signal Amplification of DNA Probe for Intracellular miR155 Sensing. Chem Asian J 2024; 19:e202400401. [PMID: 38725283 DOI: 10.1002/asia.202400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Indexed: 06/13/2024]
Abstract
The detection of specific intracellular microRNAs could be potentially helpful in understanding the underlying mechanisms of cancer metastasis and invasion. MiRNAs are usually present in lower expression levels, especially in early stage of cancer. Here, we proposed a "one-to-more" amplification strategy for miRNA imaging, by virtue of DNA strand displacements with dual-amplification. This approach involves leveraging high-abundance endogenous mRNA as fuel strand to drive cascade reactions between DNA strands for amplification, enabling the monitoring of low-abundance intracellular microRNA155. Notably, in comparison to the traditional "one-to-one" signal triggering mode, our "one-to-more" amplification strategy led to a remarkable 11.8-fold increase in fluorescence signal. Our approach not only demonstrates a high sensitivity and specificity in detecting miR155, but also allows for discrimination of miR155 expression levels in different cell lines. With the advantages of intracellular signal amplification and reduced background signal, this approach holds substantial potential in the early diagnosis of cancer.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Blvd., 010020, Hohhot, China
| |
Collapse
|
3
|
Liu X, Lu L, Zhang N, Jiang W. Regulator-carrying dual-responsive integrated AuNP composite fluorescence probe for in situ real time monitoring apoptosis progression. Talanta 2024; 269:125507. [PMID: 38056417 DOI: 10.1016/j.talanta.2023.125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Apoptosis is a typical programmed death mode with complex molecular regulation mechanisms. Developing advanced strategies to monitor apoptosis progression is conducive to disease treatment related with apoptosis. Herein, we developed a regulator-carrying dual-responsive integrated AuNP composite fluorescence probe for in situ real time monitoring apoptosis progression. The nanoprobe is constructed by modifying specially designed double-stranded DNA (dsDNA) and caspase 3-specific cleavable peptides (pep) to the surface of AuNP. After uptake by cells, the nanoprobe recognizes miRNA 21 and triggers fluorescence recovery, enabling silencing and imaging of the upstream signaling molecule miRNA 21. Once miRNA 21 is silenced, the downstream signaling molecule caspase 3 is activated and cleaves the substrate peptides, and fluorescence is restored for in situ imaging of caspase 3. The apoptosis induced by silencing miRNA 21 has been successfully implemented in HeLa and A549 cells. The expression level of miRNA 21 and corresponding changes of caspase 3 have also been effectively monitored. These results suggested this nanoprobe will be a potential tool for apoptosis-related biomedical research and clinical application.
Collapse
Affiliation(s)
- Xiaoting Liu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Ling Lu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
4
|
Liu Z, Yang H, Zhang B, Li X, Wang H, Zhang Y. A cascade signal-amplified fluorescent biosensor combining APE1 enzyme cleavage-assisted target cycling with rolling circle amplification. Analyst 2023; 149:82-87. [PMID: 37997151 DOI: 10.1039/d3an01727c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A cascade signal-amplified fluorescent biosensor was developed for miRNA-21 detection by combining APE1 enzyme-assisted target recycling and rolling circle amplification strategy. A key feature of this biosensor is its dual-trigger mechanism, utilizing both tumor-endogenous miRNA-21 and the APE1 enzyme in the initial amplification step, followed by a second rolling circle amplification reaction. This dual signal amplification cascade significantly enhanced sensitivity, achieving a detection limit of 3.33 pM. Furthermore, this biosensor exhibited excellent specificity and resistance to interference, allowing it to effectively distinguish and detect the target miRNA-21 in the presence of multiple interfering miRNAs. Moreover, the biosensor maintained its robust detection capabilities in a 10% serum environment, demonstrating its potential for clinical disease diagnosis applications.
Collapse
Affiliation(s)
- Zirui Liu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hongqun Yang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Beibei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinhao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Huang Z, Xu K, Zhao L, Zheng LE, Xu N, Yan C, Hu X, Zhang Q, Liu J, Zhao Q, Xia Y. AND-Gated Nanosensor for Imaging of Glutathione and Apyrimidinic Endonuclease 1 in Cells, Animals, and Organoids. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37245159 DOI: 10.1021/acsami.3c02236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The development of a strategy for imaging of glutathione (GSH) and apurinic/apyrimidinic endonuclease 1 (APE1) in an organism remains challenging despite their significance in elaborating the correlated pathophysiological processes. Therefore, in this study, we propose a DNA-based AND-gated nanosensor for fluorescence imaging of the GSH as well as APE1 in living cells, animals, and organoids. The DNA probe is composed of a G-strand and A-strand. The disulfide bond in the G-strand is cleaved through a GSH redox reaction, and the hybridization stability between the G-strand and A-strand is decreased, leading to a conformational change of the A-strand. In the presence of APE1, the apurinic/apyrimidinic (AP) site in the A-strand is digested, producing a fluorescence signal for the correlated imaging of GSH and APE1. This nanosensor enables monitoring of the expression level change of GSH and APE1 in cells. Additionally, we illustrate the capability of this "dual-keys-and-locked" conceptual methodology in achieving specific tumor imaging when GSH and APE1 are present simultaneously (overexpressed GSH and APE1 in tumor cells) with improving tumor-to-normal tissue ratio in vivo. Furthermore, using this nanosensor, the GSH and APE1 also are visualized in organoids that recapitulate the phenotypic and functional traits of the original biological specimens. Overall, this study demonstrates the potential of our proposed biosensing technology in investigating the roles of various biological molecules involved in specific diseases.
Collapse
Affiliation(s)
- Zening Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Kaixiang Xu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Lijuan Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Li-E Zheng
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Nana Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Caixia Yan
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Xingjiang Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Jian Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Yaokun Xia
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| |
Collapse
|
6
|
Xu J, Yao L, Zhong X, Hu K, Zhao S, Huang Y. A biodegradable and cofactor self-sufficient aptazyme nanoprobe for amplified imaging of low-abundance protein in living cells. Talanta 2023; 253:123983. [PMID: 36201958 DOI: 10.1016/j.talanta.2022.123983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Despite the progress on the analysis of proteins either in vitro or in vivo, detection and imaging of low-abundance proteins in living cells still remains challenging. Herein, a novel biodegradable and cofactor self-sufficient DNAzyme nanoprobe has been deve-loped for catalytic imaging of protein in living cells with signal amplification capacity. This DNAzyme nanoprobe is constructed by assembling a DNAzyme subunit-containing aptamer hairpin (HP), another DNAzyme subunit strand (DS), and the molecular beacon (MB) substrate strand onto pH-sensitive ZnO@polydopamine nanorods (ZnO@PDA NRs) that work as DNAzyme cofactor suppliers. Such a nanoprobe can facilitate cellular uptake of DNA molecules and protection of them from nuclease degradation as well as release of them in cells by lysosomal acid-triggered dissolution of ZnO@PDA NRs into Zn2+ as DNAzyme cofactor. Upon recognition and binding with the intracellular protein target, the stem of HP is opened, after which the opened HP hybridizes with DS and generates activated DNAzymes. Each activated DNAzyme can catalyze the cleavage of many MB substrates through true enzymatic multiple turnovers, resulting in the separation of the quenched fluorophore/quencher pair labeled in MB and the generation of significantly amplified fluorescence. Using nucleolin (NCL) as a model protein, this nanoprobe enables the analysis of NCL with a detection limit of 1.8 pM, which are at least two orders of magnitude lower than that of non-catalytic imaging probe. Moreover, it could accurately distinguish tumor cells and normal cells by live cell NCL imaging. And the experimental results are also further verified by flow cytometry assays. The developed nanoprobe can be easily extended to detect other biomolecules by the change of their corresponding aptamer sequences, thus providing a promising tool for highly sensitive imaging of low-abundance biomolecules in living cells.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Xiaohong Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|