1
|
Mostarac D, Trapella M, Bertini L, Comez L, Paciaroni A, De Michele C. Polymeric Properties of Telomeric G-Quadruplex Multimers: Effects of Chemically Inert Crowders. Biomacromolecules 2025; 26:3128-3138. [PMID: 40199738 PMCID: PMC12076513 DOI: 10.1021/acs.biomac.5c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
G-quadruplexes are noncanonical DNA structures rather ubiquitous in the human genome, which are thought to play a crucial role in the development of the majority of cancers. Here, we present a novel coarse-grained approach in modeling G-quadruplexes that accounts for their structural flexibility. We apply it to study the polymeric properties of G-quadruplex multimers, with and without crowder molecules, to mimic in vivo conditions. We find that, contrary to some suggestions found in the literature, long G-quadruplex multimers are rather flexible polymeric macromolecules, with a local persistence length comparable to monomer size, exhibiting a chain stiffness variation profile consistent with a real polymer in good solvent. Moreover, in a crowded environment (up to 10% volume fraction), we report that G-quadruplex multimers exhibit an increased propensity for coiling, with a corresponding decrease in the measured chain stiffness.
Collapse
Affiliation(s)
- Deniz Mostarac
- Department
of Physics, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mattia Trapella
- Department
of Physics and Geology, University of Perugia, 06123 Perugia, Italy
| | - Luca Bertini
- Department
of Physics and Geology, University of Perugia, 06123 Perugia, Italy
| | - Lucia Comez
- CNR
- Istituto Officina dei Materiali (IOM), 06123 Perugia, Italy
| | | | | |
Collapse
|
2
|
Sánchez PA, Cerrato A, Cerdà JJ, Bona-Casas C, Sintes T, Massó J. Dynamic response of a ferromagnetic nanofilament under rotating fields: effects of flexibility, thermal fluctuations and hydrodynamics. NANOSCALE 2024; 16:11724-11738. [PMID: 38864189 DOI: 10.1039/d4nr01034e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Using nonequilibrium computer simulations, we study the response of ferromagnetic nanofilaments, consisting of stabilized one dimensional chains of ferromagnetic nanoparticles, under external rotating magnetic fields. In difference with their analogous microscale and stiff counterparts, which have been actively studied in recent years, nonequilibrium properties of rather flexible nanoparticle filaments remain mostly unexplored. By progressively increasing the modeling details, we are able to evidence the qualitative impact of main interactions that can not be neglected at the nanoscale, showing that filament flexibility, thermal fluctuations and hydrodynamic interactions contribute independently to broaden the range of synchronous frequency response in this system. Furthermore, we also show the existence of a limited set of characteristic dynamic filament configurations and discuss in detail the asynchronous response, which at finite temperature becomes probabilistic.
Collapse
Affiliation(s)
- Pedro A Sánchez
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Antonio Cerrato
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Joan J Cerdà
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Carles Bona-Casas
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| | - Tomás Sintes
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), University of the Balearic Islands, 07122 Palma, Spain
| | - Joan Massó
- Physics Department, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
3
|
Mostarac D, Novak EV, Kantorovich SS. Relating the length of a magnetic filament with solvophobic, superparamagnetic colloids to its properties in applied magnetic fields. Phys Rev E 2023; 108:054601. [PMID: 38115450 DOI: 10.1103/physreve.108.054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/08/2023] [Indexed: 12/21/2023]
Abstract
The idea of creating polymer-like structures by crosslinking magnetic nanoparticles (MNPs) opened an alternative perspective on controlling the rheological properties of magnetoresponsive systems, because unlike suspensions of self-assembled MNPs, whose cluster sizes are sensitive to temperature, magnetic filaments (MFs) preserve their initial topology. Considering the length scales characteristic of single-domain nanoparticles used to create MFs, the MNPs can be both ferro- and superparamagnetic. Moreover, steric or electrostatic stabilization might not fully screen van der Waals interactions. In this paper, using coarse-grained molecular dynamics simulations, we investigate the influence of susceptibility of superparamagnetic MNPs-their number and central attraction forces between them-on the polymeric, structural, and magnetic properties of MFs with varied backbone rigidity. We find that, due to the general tendency of MFs with superparamagnetic monomers to bend, reinforced for colloids with a high susceptibility, properties of MFs vary greatly with chain length.
Collapse
Affiliation(s)
- Deniz Mostarac
- Computational and Soft Matter Physics, University of Vienna, 1090, Vienna, Austria
| | - Ekaterina V Novak
- Department of Theoretical and Mathematical Physics, Ural Federal University, 620000, Ekaterinburg, Russia
| | - Sofia S Kantorovich
- Computational and Soft Matter Physics, University of Vienna, 1090, Vienna, Austria and Research Platform Mathematics-Magnetism-Materials, University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
4
|
Stenke LJ, Saccà B. Growth Rate and Thermal Properties of DNA Origami Filaments. NANO LETTERS 2022; 22:8818-8826. [PMID: 36327970 PMCID: PMC9706658 DOI: 10.1021/acs.nanolett.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Synthetic DNA filaments exploit the programmability of the individual units and their predictable self-association to mimic the structural and dynamic features of natural protein filaments. Among them, DNA origami filamentous structures are of particular interest, due to the versatility of morphologies, mechanical properties, and functionalities attainable. We here explore the thermodynamic and kinetic properties of linear structures grown from a ditopic DNA origami unit, i.e., a monomer with two distinct interfaces, and employ either base-hybridization or base-stacking interactions to trigger the dimerization and polymerization process. By observing the temporal evolution of the system toward equilibrium, we reveal kinetic aspects of filament growth that cannot be easily captured by postassembly studies. Our work thus provides insights into the thermodynamics and kinetics of hierarchical DNA origami assembly and shows how it can be mastered by the anisotropy of the building unit and its self-association mode.
Collapse
|
5
|
Magnetic Nanoparticles: Current Advances in Nanomedicine, Drug Delivery and MRI. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Magnetic nanoparticles (MNPs) have evolved tremendously during recent years, in part due to the rapid expansion of nanotechnology and to their active magnetic core with a high surface-to-volume ratio, while their surface functionalization opened the door to a plethora of drug, gene and bioactive molecule immobilization. Taming the high reactivity of the magnetic core was achieved by various functionalization techniques, producing MNPs tailored for the diagnosis and treatment of cardiovascular or neurological disease, tumors and cancer. Superparamagnetic iron oxide nanoparticles (SPIONs) are established at the core of drug-delivery systems and could act as efficient agents for MFH (magnetic fluid hyperthermia). Depending on the functionalization molecule and intrinsic morphological features, MNPs now cover a broad scope which the current review aims to overview. Considering the exponential expansion of the field, the current review will be limited to roughly the past three years.
Collapse
|
6
|
Mostarac D, Kantorovich SS. Rheology of a Nanopolymer Synthesized through Directional Assembly of DNA Nanochambers, for Magnetic Applications. Macromolecules 2022; 55:6462-6473. [PMID: 35966117 PMCID: PMC9367010 DOI: 10.1021/acs.macromol.2c00738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Indexed: 11/29/2022]
Abstract
![]()
We present a numerical study of the effects of monomer
shape and
magnetic nature of colloids on the behavior of a single magnetic filament
subjected to the simultaneous action of shear flow and a stationary
external magnetic field perpendicular to the flow. We find that based
on the magnetic nature of monomers, magnetic filaments exhibit a completely
different phenomenology. Applying an external magnetic field strongly
inhibits tumbling only for filaments with ferromagnetic monomers.
Filament orientation with respect to the flow direction is in this
case independent of monomer shape. In contrast, reorientational dynamics
in filaments with superparamagnetic monomers are not inhibited by
applied magnetic fields, but enhanced. We find that the filaments
with spherical, superparamagnetic monomers, depending on the flow
and external magnetic field strength, assume semipersistent, collapsed,
coiled conformations, and their characteristic time of tumbling is
a function of field strength. However, external magnetic fields do
not affect the characteristic time of tumbling for filaments with
cubic, superparamagnetic monomers, but increase how often tumbling
occurs.
Collapse
Affiliation(s)
- Deniz Mostarac
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Research Platform MMM Mathematics-Magnetism-Materials, 1090 Vienna, Austria
| | - Sofia S. Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|