1
|
Saji VS. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts. Chem Asian J 2024; 19:e202400712. [PMID: 39037924 DOI: 10.1002/asia.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Trifunctional electrocatalysts, an exciting class of materials that can simultaneously catalyze hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), can significantly enhance the performance and economic viability of electrochemical energy storage and conversion technologies such as water-splitting electrolyzers, metal-air batteries, fuel cells and their integrated devices. Such multifunctional electrocatalysts encompass multiple active sites that can simultaneously catalyze two or more different electrochemical reactions and are feasible routes for addressing global energy and environmental challenges. This review accounts for nanocarbons-based trifunctional electrocatalysts reported for electrolyzers, metal-air batteries and integrated electrolyzer-battery systems, providing a practical perspective. Metal-free and hybrid (hybrids of nanocarbons and transition metals/compounds) trifunctional electrocatalysts are covered. Given the growing importance of green technologies, we discuss biomass-derived carbon-based trifunctional electrocatalysts separately. The collective information provided in the review could help researchers derive more effective and durable trifunctional electrocatalysts suitable for commercial use.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
2
|
Guo XS, Huang ZY, Qi XW, Si LP, Zhang H, Liu HY. The optimization of iron porphyrin@MOF-5 derived Fe N C electrocatalysts for oxygen reduction reaction in zinc-air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Zhao J, Tan H, Zi Z, Song L, Hu H, Zhang H, Wu M. Synchronous coupling of defects and a heteroatom-doped carbon constraint layer on cobalt sulfides toward boosted oxide electrolysis activities for highly energy-efficient micro-zinc-air batteries. NANOSCALE 2023; 15:5927-5937. [PMID: 36877572 DOI: 10.1039/d3nr00082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sluggish kinetics of oxygen electrocatalysis reactions on cathodes significantly suppresses the energy efficiency of zinc-air batteries (ZABs). Herein, by coupling in situ generated CoS nanoparticles rich in cobalt vacancies (VCo) with a dual-heteroatom-doped layered carbon framework, a hybrid Co-based catalyst (Co1-xS@N/S-C) is designed and synthesized from Co-MOF precursor. Experimental analyses, together with density functional theory (DFT)-based calculations, demonstrate that the facilitated ion diffusion enabled by the introduced VCo, together with the enhanced electron transport benefiting from the well-designed dual-heteroatom-doped laminated carbon framework, synergistically boost the bifunctional electrocatalytic activity of Co1-xS@N/S-C (ΔE = 0.76 V), which is much superior to that of CoS@N/S-C without VCo (ΔE = 0.89 V), CoS without VCo (ΔE = 1.23 V), and the dual-heteroatom-doped laminated carbon framework. As expected, the further assembled ZAB employing Co1-xS@N/S-C as the cathode electrocatalyst exhibits enhanced energy efficiency in terms of better cycling stability (510 cycles/170 hours) and a higher specific capacity (807 mA h g-1). Finally, a flexible/stretched solid state micro-ZAB (F/SmZAB) with Co1-xS@N/S-C as the cathode electrocatalyst and a wave-shaped GaIn-Ni-based liquid metal as the electronic circuit is further designed, which can display excellent electrical properties and long elongation. This work provides a new defect and structure coupling strategy for boosting the oxide electrolysis activities of Co-based catalysts. Furthermore, F/SmZAB represents a promising solution for a compatible micropower source in wearable microelectronics.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei 230601, China.
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Zhenfa Zi
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, 230601, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Haibo Hu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei 230601, China.
| | - Haijun Zhang
- School of Safety Science and Engineering, Civil Aviation University of China, Tianjin, 300300, P. R. China.
| | - Mingzai Wu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institute of Energy, Hefei Comprehensive National Science Center, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Zhang L, Zhang J, Xu A, Lin Z, Wang Z, Zhong W, Shen S, Wu G. Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution. Biomimetics (Basel) 2023; 8:biomimetics8010104. [PMID: 36975334 PMCID: PMC10046411 DOI: 10.3390/biomimetics8010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The electrocatalytic hydrogen evolution activity of transition metal sulfide heterojunctions are significantly increased when compared with that of a single component, but the mechanism behind the performance enhancement and the preparation of catalysts with specific morphologies still need to be explored. Here, we prepared a Co9S8/MoS2 heterojunction with microsphere morphology consisting of thin nanosheets using a facile two-step method. There is electron transfer between the Co9S8 and MoS2 of the heterojunction, thus realizing the redistribution of charge. After the formation of the heterojunction, the density of states near the Fermi surface increases, the d-band center of the transition metal moves downward, and the adsorption of both water molecules and hydrogen by the catalyst are optimized. As a result, the overpotential of Co9S8/MoS2 is superior to that of most relevant electrocatalysts reported in the literature. This work provides insight into the synergistic mechanisms of heterojunctions and their morphological regulation.
Collapse
Affiliation(s)
- Lili Zhang
- College of Material Science and Engineering, Changchun University of Technology, Changchun 130051, China
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Jitang Zhang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Aijiao Xu
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Zhiping Lin
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
- Correspondence: (S.S.); (G.W.)
| | - Guangfeng Wu
- College of Material Science and Engineering, Changchun University of Technology, Changchun 130051, China
- Correspondence: (S.S.); (G.W.)
| |
Collapse
|
5
|
Qiao C, Hao Y, Cao C, Zhang J. Transformation mechanism of high-valence metal sites for the optimization of Co- and Ni-based OER catalysts in an alkaline environment: recent progress and perspectives. NANOSCALE 2023; 15:450-460. [PMID: 36533402 DOI: 10.1039/d2nr05783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As an important semi-reaction process in electrocatalysis, oxygen evolution reaction (OER) is closely associated with electrochemical hydrogen production, CO2 electroreduction, electrochemical ammonia synthesis and other reactions, which provide electrons and protons for the related applications. Considering their fundamental mechanism, metastable high-valence metal sites have been identified as real, efficient OER catalytic sites from the recent observation by in situ characterization technology. Herein, we review the transformation mechanism of high-valence metal sites in the OER process, particularly transition metal materials (Co- and Ni-based). In particular, research progress in the transformation process and role of high-valence metal sites to optimize OER performance is summarized. The key challenges and prospects of the design of high-efficiency OER catalysts based on the above-mentioned mechanism and some new in situ characterizations are also discussed.
Collapse
Affiliation(s)
- Chen Qiao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingying Hao
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chuanbao Cao
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - JiaTao Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
- Beijing Key Laboratory of Structurally Controllable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Zoghi S, Rahmandoust M. A novel technique to overcome fluid flow influence in carbon quantum dots/paper-based analytical devices. Sci Rep 2022; 12:17861. [PMID: 36284174 PMCID: PMC9596499 DOI: 10.1038/s41598-022-22837-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 01/20/2023] Open
Abstract
Paper-based analytical devices are promising choices for rapid tests and lab-on-chip detection techniques. Carbon quantum dots (CQDs), on the other hand, are biocompatible nanomaterials, which are industrially promising, due to their fast and cost-effective gram-scale synthesis techniques, as well as their significantly high and stable photoluminescence (PL) properties, which are durable and reliable over a year. However, there have been limitations in the entrapment of CQDs on cellulose papers in a way that their PL is not influenced by the flowing of the CQDs with the stream of analyte fluid, making the sensors less accurate at very low concentrations of liquid analytes. Therefore, in this investigation, a polyvinyl alcohol/alkaline-based method was systematically generated and developed to entrap CQDs inside a 3D crystalline matrix on paper, in a way that they can be used directly as probes for a simple drop-and-detect method. As a proof of concept, N/P-doped CQD on cellulose paper was used to make fluorescent paper-based analytical devices for identifying traces of Hg2+ of around 100 ppb. The designed sensor was tested over several months, to study its durability and functionality over long periods, for potential industrial applications.
Collapse
Affiliation(s)
- Sepideh Zoghi
- grid.412502.00000 0001 0686 4748Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Moones Rahmandoust
- grid.412502.00000 0001 0686 4748Protein Research Center, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
7
|
Wang S, Zhao R, Zheng T, Lu Z, Fang Y, Xie H, Wang W, Xue W. Rational Design of a Low-Dimensional and Metal-free Heterostructure for Efficient Water Oxidation: DFT and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12562-12569. [PMID: 36191260 DOI: 10.1021/acs.langmuir.2c02011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A nitrogen-doped fullerene dimer is synthesized and compounded with multi-walled carbon nanotubes (MWCNTs) to construct a low-dimensional and metal-free 0D-1D heterostructure for electrocatalytic water oxidation. The (C59N)2/MWCNTs heterostructure exhibits a highly efficient performance, as verified by both first-principles density functional theory and experimental studies. The *O → *OOH process is confirmed as the rate-determining step of water oxidation. The negatively charged N-doping leads to electronic redistribution and intermolecular charge transfer and thus reduces the uphill free energies of intermediates on the (C59N)2/MWCNTs interface. Therefore, the (C59N)2/MWCNTs heterostructure has great potential to emit light and heat in metal-free-based electrocatalytic water oxidation.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Rui Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Tian Zheng
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang621010, China
| | - Zheng Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Yuan Fang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou310003, China
| | - Wenjian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| | - Weidong Xue
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu610054, PR China
| |
Collapse
|
8
|
Deng X, Gu X, Deng Y, Jiang Z, Chen W, Dang D, Lin W, Chi B. Boosting the activity and stability via synergistic catalysis of Co nanoparticles and MoC to construct a bifunctional electrocatalyst for high-performance and long-life rechargeable zinc-air batteries. NANOSCALE 2022; 14:13192-13203. [PMID: 36047468 DOI: 10.1039/d2nr03918d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high overpotential of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) leading to slow air cathode kinetics is still a major challenge for zinc-air batteries (ZABs), hindering the commercialization of ZABs. With the advantages of cost-effectiveness and feasibility of synthesis at room temperature, zeolite imidazole frameworks (ZIFs) are regarded as advanced precursors. But a majority of ZIF-derived catalysts show only one catalytic activity, which limits their performance in ZABs as well as the cycling stability. In addition, molybdenum carbide (MoC) is recognized as an excellent candidate for renewable energy conversion due to its good chemical resistance and thermal stability. Herein, we report a ZIF-67-derived Co/MoC-NC multiphase doped carbon bifunctional ORR/OER catalyst with multiple active sites for the cathode of ZABs. The synergistic catalysis of Co nanoparticles and MoC nanoparticles in Co/MoC-NC which are embedded in a thin layer of N-doped graphitic carbon and immobilized on N-doped graphitic carbon, respectively, demonstrates superior ORR catalytic performance and durability both under alkaline and acidic conditions (E1/2 = 0.87 V in 1.0 M KOH and E1/2 = 0.76 V in 0.5 M H2SO4). Simultaneously, Co/MoC-NC also exhibits favorable OER performance (10 mA cm-2, η = 320 mV) in 1 M KOH. Furthermore, a remarkable peak-power density of 215.36 mW cm-2 and great cycling stability could be achieved while applying Co/MoC-NC in the cathode of ZABs (over 300 h). This work will provide a viable design concept for designing and synthesizing multifunctional catalysts to construct rechargeable ZABs.
Collapse
Affiliation(s)
- Xiaohua Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Xianrui Gu
- Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yingjie Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Zhu Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Wenxuan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Wei Lin
- Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bin Chi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| |
Collapse
|
9
|
Chen S, Wang S, Dong Y, Du H, Zhao J, Zhang P. Anchoring NiO Nanosheet on the Surface of CNT to Enhance the Performance of a Li-O2 Battery. NANOMATERIALS 2022; 12:nano12142386. [PMID: 35889610 PMCID: PMC9320305 DOI: 10.3390/nano12142386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
Li2O2, as the cathodic discharge product of aprotic Li-O2 batteries, is difficult to electrochemically decompose. Transition-metal oxides (TMOs) have been proven to play a critical role in promoting the formation and decomposition of Li2O2. Herein, a NiO/CNT catalyst was prepared by anchoring a NiO nanosheet on the surface of CNT. When using the NiO/CNT as a cathode catalyst, the Li-O2 battery had a lower overpotential of 1.2 V and could operate 81 cycles with a limited specific capacity of 1000 mA h g−1 at a current density of 100 mA g−1. In comparison, with CNT as a cathodic catalyst, the battery could achieve an overpotential of 1.64 V and a cycling stability of 66 cycles. The introduction of NiO effectively accelerated the generation and decomposition rate of Li2O2, further improving the battery performance. SEM and XRD characterizations confirmed that a Li2O2 film formed during the discharge process and could be fully electrochemical decomposed in the charge process. The internal network and nanoporous structure of the NiO/CNT catalyst could provide more oxygen diffusion channels and accelerate the decomposition rate of Li2O2. These merits led to the Li-O2 battery’s better performance.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (S.C.); (S.W.)
| | - Shukun Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China; (S.C.); (S.W.)
| | - Yunyun Dong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.D.); (H.D.)
| | - Hongmei Du
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.D.); (H.D.)
| | - Jinsheng Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.D.); (H.D.)
- Correspondence: (J.Z.); (P.Z.)
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China; (Y.D.); (H.D.)
- Correspondence: (J.Z.); (P.Z.)
| |
Collapse
|