1
|
Tan W, Liu Z, Wu Q, Yuan L, Xia Z, Zhao K, Huang C, Chen L, Lu S, Wang L. Flexible free-standing Fe-CoP-NAs/CC nanoarrays for high-performance full lithium-ion batteries. J Colloid Interface Sci 2024; 667:441-449. [PMID: 38642483 DOI: 10.1016/j.jcis.2024.04.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
In this study, a flexible, free-standing Fe-doped CoP nanoarrays electrode for superior lithium-ion storage has been successfully fabricated. The electrode combines the advantages of a Fe-doping and a flexible carbon cloth (CC) support, resulting in a high specific capacity (1356 mAh/g at 0.2 A/g) and excellent cycling stability (1138 mAh/g after 100 cycles). The cyclic voltammetry (CV) curves at different scan rates investigate the outstanding lithium storage behavior of Fe-CoP-NAs/CC which indicates a combined influence of diffusion behavior and capacitance behavior on the electrochemical process. The galvanostatic intermittent titration technique (GITT) analyzes the diffusion kinetics of Li+ which indicates the fast diffusion kinetics in the Fe-CoP/NAs/CC anode. The assembled Fe-CoP-NAs/CC//LiFePO4 battery exhibits a remarkable capacity of 325.2 mAh/g even at 5 A/g. And the battery also has good cycle stability, and still provides 498.1 mAh/g specific capacity after 200 cycles. Moreover, the Fe-CoP-NAs/CC//LiFePO4 soft-pack battery can continuously power the LEDs when it is bent at various angles which demonstrates its potential for use in wearable devices.
Collapse
Affiliation(s)
- Wenqi Tan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Zhongping Liu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China.
| | - Qian Wu
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Linying Yuan
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Zijie Xia
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Kangning Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland.
| | - Chen Huang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shigang Lu
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Linlin Wang
- Institute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Wang S, Chen Y, Long M, Li W, Huang Y, Lai S, Yang G, Song Y, Chen J, Yu G. Fabrication of well-aligned Co-MOF arrays through a controlled and moderate process for the development of a flexible tetrabromobisphenol A sensor. Analyst 2024; 149:1807-1816. [PMID: 38334483 DOI: 10.1039/d3an01950k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has attracted a great deal of attention due to its side effects and potential bioaccumulation properties. It is of great importance to construct and develop novel electrochemical sensors for the sensitive and selective detection of TBBPA. In the present study, cobalt (Co) based metal-organic frameworks (MOFs) were synthesized on carbon cloth (CC) by using cobalt nitrate hexahydrate and 2-methylimidazole. The morphological characterization was carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results showed that Co-MOFs/CC have a leaf-like structure and abundant surface functional groups. The electrochemical properties of the sensor were investigated by differential pulse voltammetry (DPV). The effects of different ratios of metal ions to organic ligands, reaction temperature, time, concentration, pH value of the electrolyte, and incubation time on the oxidation peak current of TBBPA were studied. Under the optimal conditions, the linear range of the designed sensor was 0.1 μM-100 μM, and the limit of detection was 40 nM. The proposed sensor is simple, of low cost and efficient, which can greatly facilitate the detection tasks of environmental monitoring workers.
Collapse
Affiliation(s)
- Shiyuan Wang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yao Chen
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Mei Long
- Department of Cardiology, ZiBo Central Hospital, Zibo, China
| | - Wanyu Li
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yiran Huang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Shiyi Lai
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guiping Yang
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Yang Song
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Jinfa Chen
- The Center of Laboratory, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Guangxia Yu
- Key Lab of Environment and Health, Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|