1
|
Zou C, Deng X, Han Y, Lin LC. Atomistic Insights into the Reactive Diffusion of CO 2 in Guanidine-Based Facilitated Transport Membranes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:9550-9561. [PMID: 40433351 PMCID: PMC12105039 DOI: 10.1021/acs.jpcc.5c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
The pressing need to address climate change has led to significant advancements in carbon dioxide (CO2) capture technologies. Notably, facilitated transport membranes (FTMs) are distinguished by their exceptional selectivity and permeance, attributed to their reversible chemical reactions with CO2. This study, for the first time, sheds light on the reactive diffusion mechanism of CO2 in FTMs, utilizing 1,1,3,3-tetramethylguanidine (TMG) as a mobile carrier. Specifically, state-of-the-art molecular dynamics (MD) simulations, augmented by a reparameterized reactive force field (ReaxFF) capable of describing atomistic interactions and reaction pathways, are conducted to investigate the transport of CO2 in TMG. The analysis of mean squared displacement (MSD) and diffusion coefficients reveals a clear hierarchy in the mobility of reaction components. Our findings highlight a unique hopping diffusion mechanism between bicarbonate ions and TMG molecules, increasing the diffusivity of reacted CO2 by 1.4 times. The hopping events observed not only enhance our understanding of molecular mobility but also offer a means to boost the performance of FTMs in CO2 capture applications. Overall, this research lays the groundwork for the future design of FTMs with optimal carrier properties.
Collapse
Affiliation(s)
- Changlong Zou
- William G.
Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio43210-1350, United States
| | - Xuepeng Deng
- William G.
Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio43210-1350, United States
| | - Yang Han
- William G.
Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio43210-1350, United States
| | - Li-Chiang Lin
- William G.
Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio43210-1350, United States
- Department
of Chemical Engineering, National Taiwan
University, No.1, Sec. 4 Roosevelt Rd., Taipei106319, Taiwan
| |
Collapse
|
2
|
Gama V, Roy D, Lima FV, Sanyal O. Connecting Material Characteristics with System Properties for Membrane-Based Direct Air Capture (m-DAC) Using Process Operability and Inverse Design Approaches. Ind Eng Chem Res 2025; 64:8375-8389. [PMID: 40291388 PMCID: PMC12022977 DOI: 10.1021/acs.iecr.4c04553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025]
Abstract
This paper presents a process modeling approach for a two-staged membrane-based direct air capture (m-DAC) process, considering material characteristics, membrane separation, and system properties. m-DAC is a negative emissions technology for capturing dilute CO2 from air. Its continuous and modular nature could reduce economic challenges compared to sorption-based processes, which require costly regeneration. Facilitated transport membranes, with specialized CO2 carriers, offer higher performance than traditional sorption-diffusion membranes. Their key properties-the CO2 apparent diffusion coefficient () and equilibrium constant (K eq)-determine membrane separation properties such as CO2 permeance and CO2/N2 selectivity. This work maps these inputs to feasible output spaces such as for CO2 recovery, purity, and capture cost. Additionally, inverse design is used to determine the required membrane properties for target system outcomes. Overall, this study provides a framework for membrane researchers to design cost-effective, scalable m-DAC solutions.
Collapse
Affiliation(s)
- Vitor Gama
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Deepanjali Roy
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Fernando V. Lima
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Oishi Sanyal
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
3
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Gama V, Dantas B, Sanyal O, Lima FV. Process Operability Analysis of Membrane-Based Direct Air Capture for Low-Purity CO 2 Production. ACS ENGINEERING AU 2024; 4:394-404. [PMID: 39185392 PMCID: PMC11342364 DOI: 10.1021/acsengineeringau.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 08/27/2024]
Abstract
Addressing climate change constitutes one of the major scientific challenges of this century, and it is widely acknowledged that anthropogenic CO2 emissions largely contribute to this issue. To achieve the "net-zero" target and keep the rise in global average temperature below 1.5 °C, negative emission technologies must be developed and deployed at a large scale. This study investigates the feasibility of using membranes as direct air capture (DAC) technology to extract CO2 from atmospheric air to produce low-purity CO2. In this work, a two-stage hollow fiber membrane module process is designed and modeled using the AVEVA Process Simulation platform to produce a low-purity (≈5%) CO2 permeate stream. Such low-purity CO2 streams could have several possible applications such as algae growth, catalytic oxidation, and enhanced oil recovery. An operability analysis is performed by mapping a feasible range of input parameters, which include membrane surface area and membrane performance metrics, to an output set, which consists of CO2 purity, recovery, and net energy consumption. The base case for this simulation study is generated considering a facilitated transport membrane with high CO2/N2 separation performance (CO2 permeance = 2100 GPU and CO2/N2 selectivity = 1100), when tested under DAC conditions. With a constant membrane area, both membranes' intrinsic performances are found to have a considerable impact on the purity, recovery, and energy consumption. The area of the first module plays a dominant role in determining the recovery, purity, and energy demands, and in fact, increasing the area of the second membrane has a negative impact on the overall energy consumption, without improving the overall purities. The CO2 capture capacity of DAC units is important for implementation and scale-up. In this context, the performed analysis showed that the m-DAC process could be appropriate as a small-capacity system (0.1-1 Mt/year of air), with reasonable recoveries and overall purity. Finally, a preliminary CO2 emissions analysis is carried out for the membrane-based DAC process, which leads to the conclusion that the overall energy grid must be powered by renewable sources for the technology to qualify within the negative emissions category.
Collapse
Affiliation(s)
- Vitor Gama
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Beatriz Dantas
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Oishi Sanyal
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Fernando V. Lima
- Department of Chemical and
Biomedical Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
5
|
Taylor CL, Klemm A, Al-Mahbobi L, Bradford BJ, Gurkan B, Pentzer EB. Ionic Liquid-Glycol Mixtures for Direct Air Capture of CO 2: Decreased Viscosity and Mitigation of Evaporation Via Encapsulation. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7882-7893. [PMID: 38783843 PMCID: PMC11110104 DOI: 10.1021/acssuschemeng.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Herein we address the efficiency of the CO2 sorption of ionic liquids (IL) with hydrogen bond donors (e.g., glycols) added as viscosity modifiers and the impact of encapsulating them to limit sorbent evaporation under conditions for the direct air capture of CO2. Ethylene glycol, propylene glycol, 1,3-propanediol, and diethylene glycol were added to three different ILs: 1-ethyl-3-methylimidazolium 2-cyanopyrrolide ([EMIM][2-CNpyr]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). Incorporation of the glycols decreased viscosity by an average of 51% compared to bulk IL. After encapsulation of the liquid mixtures using a soft template approach, thermogravimetric analysis revealed average reductions in volatility of 36 and 40% compared to the unencapsulated liquid mixtures, based on 1 h isothermal experiments at 25 and 55 °C, respectively. The encapsulated mixtures of [EMIM][2-CNpyr]/1,3-propanediol and [EMIM][2-CNpyr]/diethylene glycol exhibited the lowest volatility (0.0019 and 0.0002 mmol/h at 25 °C, respectively) and were further evaluated as CO2 absorption/desorption materials. Based on the capacity determined from breakthrough measurements, [EMIM][2-CNpyr]/1,3-propanediol had a lower transport limited absorption rate for CO2 sorption compared to [EMIM][2-CNpyr]/diethylene glycol with 0.08 and 0.03 mol CO2/kg sorbent, respectively; however, [EMIM][2-CNpyr]/diethylene glycol capsules exhibited higher absorptions capacity at ∼500 ppm of CO2 (0.66 compared to 0.47 mol of CO2/kg sorbent for [EMIM][2-CNpyr]/1,3-propanediol). These results show that glycols can be used to not only reduce IL viscosity while increasing physisorption sites for CO2 sorption, but also that encapsulation can be utilized to mitigate evaporation of volatile viscosity modifiers.
Collapse
Affiliation(s)
- Cameron
D. L. Taylor
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Aidan Klemm
- Department
of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Luma Al-Mahbobi
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - B. Jack Bradford
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
| | - Burcu Gurkan
- Department
of Chemical Engineering Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Emily B. Pentzer
- Department
of Materials Science and Engineering, Texas
A&M University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Sharma A, Leverant CJ, Richards D, Beamis CP, Spoerke ED, Percival SJ, Rempe SB, Vanegas JM. Transport and Energetics of Carbon Dioxide in Ionic Liquids at Aqueous Interfaces. J Phys Chem B 2023. [PMID: 38048268 DOI: 10.1021/acs.jpcb.3c05946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
A major hurdle in utilizing carbon dioxide (CO2) lies in separating it from industrial flue gas mixtures and finding suitable storage methods that enable its application in various industries. To address this issue, we utilized a combination of molecular dynamics simulations and experiments to investigate the behavior of CO2 in common room-temperature ionic liquids (RTIL) when in contact with aqueous interfaces. Our investigation of RTILs, [EMIM][TFSI] and [OMIM][TFSI], and their interaction with a pure water layer mimics the environment of a previously developed ultrathin enzymatic liquid membrane for CO2 separation. We analyzed diffusion constants and viscosity, which reveals that CO2 molecules exhibit faster mobility within the selected ILs compared to what would be predicted solely based on the viscosity of the liquids using the standard Einstein-Stokes relation. Moreover, we calculated the free energy of translocation for various species across the aqueous-IL interface, including CO2 and HCO3-. Free energy profiles demonstrate that CO2 exhibits a more favorable partitioning behavior in the RTILs compared to that in pure water, while a significant barrier hinders the movement of HCO3- from the aqueous layer. Experimental measurement of the CO2 transport in the RTILs corroborates the model. These findings strongly suggest that hydrophobic RTILs could serve as a promising option for selectively transporting CO2 from aqueous media and concentrating it as a preliminary step toward storage.
Collapse
Affiliation(s)
- Arjun Sharma
- Department of Physics, University of Vermont, Burlington, Vermont 05405, United States
| | - Calen J Leverant
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Danielle Richards
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Erik D Spoerke
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Electronic, Optical, and Nano Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Juan M Vanegas
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|