1
|
Li M, Chananonnawathorn C, Pan N, Limwichean S, Deng Z, Horprathum M, Chang J, Wang S, Nakajima H, Klamchuen A, Li L, Meng G. Prompt Electronic Discrimination of Gas Molecules by Self-Heating Temperature Modulation. ACS Sens 2024; 9:206-216. [PMID: 38114442 DOI: 10.1021/acssensors.3c01839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Though considerable progress has been achieved on gas molecule recognition by electronic nose (e-nose) comprised of nonselective (metal oxide) semiconductor chemiresistors, extracting adequate molecular features within short time (<1 s) remains a big obstacle, which hinders the emerging e-nose applications in lethal or explosive gas warning. Herein, by virtue of the ultrafast (∼20 μs) thermal relaxation time of self-heated WO3-based chemiresistors fabricated via oblique angle deposition, instead of external heating, self-heating temperature modulation has been proposed to generate sufficient electrical response features. Accurate discrimination of 12 gases (including 3 xylene isomers with the same function group and molecular weight) has been readily achieved within 0.5-1 s, which is one order faster than the state-of-the-art e-noses. A smart wireless e-nose, capable of instantaneously discriminating target gas in ambient air background, has been developed, paving the way for the practical applications of e-nose in the area of homeland security and public health.
Collapse
Affiliation(s)
- Meng Li
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Chanunthorn Chananonnawathorn
- Opto-Electrochemical Sensing Research Team, Spectroscopic and Sensing Devices Research Group, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
| | - Ning Pan
- University of Science and Technology of China, Hefei 230026, China
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Saksorn Limwichean
- Opto-Electrochemical Sensing Research Team, Spectroscopic and Sensing Devices Research Group, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Mati Horprathum
- Opto-Electrochemical Sensing Research Team, Spectroscopic and Sensing Devices Research Group, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand
| | - Junqing Chang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Hideki Nakajima
- Synchrotron Light Research Institute, Maung 30000, Nakhon Ratchasima, Thailand
| | - Annop Klamchuen
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou 215006, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
2
|
Chu SY, Wu MJ, Yeh TH, Lee CT, Lee HY. Sensing Mechanism and Characterization of NO 2 Gas Sensors Using Gold-Black NP-Decorated Ga 2O 3 Nanorod Sensing Membranes. ACS Sens 2024; 9:118-125. [PMID: 38150672 DOI: 10.1021/acssensors.3c01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In this work, a vapor cooling condensation system was utilized to deposit various amounts of p-type gold-black nanoparticles (NPs) onto the surface of n-type gallium oxide (Ga2O3) nanorods forming p-n heterojunction-structured sensing membranes of nitrogen dioxide (NO2) gas sensors. The role and the sensing mechanism of the various gold-black NP-decorated Ga2O3 nanorods in NO2 gas sensors were investigated. The coverage and atomic percentage of the sensing membranes were observed using high-resolution transmission electron microscopy (HRTEM) measurements and energy-dispersive spectroscopy (EDS), respectively. For the NO2 gas sensor using the sensing membrane of 60 s-deposited gold-black NP-decorated Ga2O3 nanorods under a NO2 concentration of 10 ppm, the highest responsivity of 5221.1% was obtained. This result was attributed to the spillover effect and the formation of the p-n heterojunction, which increased more ionized-oxygen adsorption sites and promoted the reaction between NO2 gas and Ga2O3 nanorods. Furthermore, the NO2 gas sensor could detect the low NO2 concentration of 100 ppb and achieved a responsivity of 56.9%. The resulting NO2 gas sensor also exhibited excellent selectivity for detecting NO2 gas, with higher responsivity at a NO2 concentration of 10 ppm compared with that of the C2H5OH and NH3 concentrations of 100 ppm.
Collapse
Affiliation(s)
- Shao-Yu Chu
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | - Mu-Ju Wu
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| | - Tsung-Han Yeh
- Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan, Republic of China
| | - Ching-Ting Lee
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
- Department of Electrical Engineering, Institute of microelectronics, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 320, Taiwan, Republic of China
| | - Hsin-Ying Lee
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
- Meta-nanoPhotonics Center, National Cheng Kung University, Tainan 701, Taiwan, Republic of China
| |
Collapse
|