1
|
Cheng H, Ma B, Ji A, Yao H, Chen P, Zhai W, Gao S, Shi L, Hu H. Janus-Structured Micro/Nanomotors: Self-Propelled Mechanisms and Biomedical Applications. Biomater Res 2025; 29:0155. [PMID: 40191071 PMCID: PMC11971528 DOI: 10.34133/bmr.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/19/2025] [Accepted: 02/09/2025] [Indexed: 04/09/2025] Open
Abstract
Self-propelled micro/nanomotors (MNMs), which can convert other energy into mechanical motion, have attracted considerable attention due to their potential applications in diverse fields. Due to the asymmetric structures and 2 or more chemically discrepant composites constructed in the Janus nanoparticles, asymmetrical forces can be created in the physical environment. Thus, MNMs with Janus structures have been widely studied for revealing possible driving mechanisms. This tutorial review covers the most representative examples of Janus-structured MNMs developed so far, which are self-propelled by different mechanisms. We focus on Janus MNMs that exhibit self-propelled motion in liquid environments and their potential applications in biomedicine, including drug delivery, cancer therapy, bioimaging, and biosensing. The driving mechanisms and challenges associated with constructing asymmetric fields are deeply discussed, along with future opportunities for these versatile and promising MNMs. This review provides an overview of the rapidly evolving field of MNMs and their potential applications, serving as a valuable resource for researchers and others interested in this field.
Collapse
Affiliation(s)
- Haoyan Cheng
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Beng Ma
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Anqi Ji
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Haonan Yao
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Pan Chen
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Wenyang Zhai
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Hao Hu
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology,
Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
2
|
Rahim FA, Niyas K, Vivek R, Pathan S, Rasheed PA. An overview of the use of non-titanium MXenes for photothermal therapy and their combinatorial approaches for cancer treatment. NANOSCALE ADVANCES 2025; 7:963-983. [PMID: 39830015 PMCID: PMC11740912 DOI: 10.1039/d4na00931b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025]
Abstract
Since the initial publication on the first Ti3C2T x MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in in vivo biomedical applications. MXenes are also known for their ability to absorb light in the near-infrared (NIR) region and generate heat by localised surface plasmon resonance (LSPR) effects and electron-phonon coupling. Optical excitation laser pulses result in hot photocarrier distribution in MXenes, which quickly transfers surplus energy to the crystal lattice and results in the internal conversion of light into heat with nearly 100% efficiency. The relaxation of hot carrier distribution by electron-phonon interactions leads to the cooling of the lattice by dissipating thermal energy to the surrounding environment. This heating effect of MXenes makes them potential photothermal agents (PTAs), particularly for PTT applications. The adjustable surface of MXenes and their high surface area-to-volume ratios are ideal for the combinatorial approach of PTT along with drug delivery, photodynamic therapy (PDT), bone regeneration and other applications. Since non-Ti MXenes are more biocompatible than Ti MXenes, they are promising candidates for different biomedical applications. This comprehensive review provides a concise overview of the current research patterns, properties, and biomedical applications of non-Ti MXenes, particularly in PTT and its combinatorial approaches.
Collapse
Affiliation(s)
- Fathima Abdul Rahim
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| | - K Niyas
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 623 India
| | - Raju Vivek
- Bio-Nano Theranostic Research Laboratory, Cancer Research Program (CRP), School of Life Sciences, Bharathiar University Coimbatore Tamilnadu 641 046 India
| | - Soyeb Pathan
- Research and Development Cell (RDC), Parul Institute of Applied Sciences, Parul University Vadodara Gujarat 391760 India
- Department of Chemistry, Parul Institute of Applied Sciences, Parul University Vadodara Gujarat 391760 India
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad Palakkad Kerala 678 623 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678 623 India
| |
Collapse
|
3
|
Chen W, Huang D, Wu R, Wen Y, Zhong Y, Guo J, Liu A, Lin L. A multi-functional integrated nanoplatform based on a tumor microenvironment-responsive PtAu/MnO 2 cascade nanoreactor with multi-enzymatic activities for multimodal synergistic tumor therapy. J Colloid Interface Sci 2025; 679:957-974. [PMID: 39486234 DOI: 10.1016/j.jcis.2024.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The utilization or improvement of tumor microenvironment (TME) has become a breakthrough in emerging oncology therapies. To address the limited therapeutic efficacy of single modality, a multi-functional integrated nanoplatform based on a TME-responsive PtAu/MnO2 cascade nanoreactor with multi-enzymatic activities was developed for multimodal synergistic tumor therapy. Benefiting from the slightly acidic environment and high-level glutathione (GSH) in TME, PtAu/MnO2 cascade nanoreactor consumed GSH, followed by the reductive generation of manganese ion (Mn2+) and the release of PtAu nanoparticles (NPs). Then, the multimodal synergistic tumor therapy was activated as follows. First, GSH depletion inhibited the activity of glutathione peroxidase 4 and led to the accumulation of lipid peroxidation, thereby inducing tumor cell ferroptosis. Second, PtAu NPs exhibited catalase-like, glucose oxidase-like and nicotinamide adenine dinucleotide (NADH) oxidase-like activities, which generated oxygen for the cascade reaction to alleviate hypoxia and further depleted glucose, NADH and adenosine triphosphate, leading to the inhibition of tumor cell proliferation via starvation therapy. Third, the production of reactive oxygen species by the oxidase- and peroxidase-like activities of PtAu NPs and the Fenton-like reaction of Mn2+ simultaneously induced tumor cell apoptosis via chemodynamic therapy. Briefly, the in vitro and in vivo results confirmed that the multi-functional integrated nanoplatform based on a PtAu/MnO2 cascade nanoreactor with five nanozyme activities demonstrated outstanding biocompatibility and greater inhibition of tumor growth via synergistic ferroptosis/starvation therapy/apoptosis.
Collapse
Affiliation(s)
- Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Dandan Huang
- Department of Pharmacy, Fujian Children's Hospital, Fuzhou, Fujian 350000, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
4
|
Bahadur R, Wijerathne B, Vinu A. Multiple Heteroatom Doped Nanoporous Biocarbon for Supercapacitor and Zinc-ion Capacitor. CHEMSUSCHEM 2024; 17:e202400999. [PMID: 38973030 PMCID: PMC11660743 DOI: 10.1002/cssc.202400999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
The use of nanoporous carbon for energy storage has seen a significant rise due to its exciting properties such as high surface area, hierarchical porosity and exceptional electrochemical properties. These unique advantages of exceptional surface and electrochemical properties of these porous carbon nanostructures can be coupled with the individual doping of heteroatoms such as S, N, O, and B for achieving high energy storage capacity and stability. Herein, we integrated the synthesis of carbon nitride (CN) and borocarbonitride (BCN) with solid state activation for introducing multiple heteroatoms (B, N, O, and S) onto the nanoporous carbon frameworks. The produced materials exhibit abundance of micro and mesoporosity, a high surface area of 2909 m2 g-1, and a pore volume of 0.87 cm3 g-1. Also, it offers an exceptional capacitance of 233.5 F g-1 at 0.5 A g-1 with 3 M KOH as electrolyte. Further, the optimised material was explored as cathode in zinc ion capacitor which delivers an energy and power density of 50.4 Wh kg-1 and 400 W kg-1 respectively in addition to high cyclability. Studies on the formation of the intermediate phases during charging/discharging of the cell through ex situ characterization result in some useful insights into the stability of ZIC.
Collapse
Affiliation(s)
- Rohan Bahadur
- College of EngineeringScience and EnvironmentThe University of NewcastleCallaghan2308NSWAustralia
| | - Binodhya Wijerathne
- School of Chemistry and PhysicsFaculty of ScienceQueensland University of TechnologyBrisbane4000QLDAustralia
| | - Ajayan Vinu
- College of EngineeringScience and EnvironmentThe University of NewcastleCallaghan2308NSWAustralia
| |
Collapse
|
5
|
Luo JJ, Guo DY, Qu ZB, Luo HQ, Li NB, Zou HL, Li BL. Engineering in situ growth of Au nanoclusters on hydrophilic paper fibres for fluorescence calligraphy-based chemical logic gates and information encryption. NANOSCALE HORIZONS 2024; 9:2007-2015. [PMID: 39224015 DOI: 10.1039/d4nh00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Gold nanoclusters (AuNCs) are a type of rising-star fluorescence nanomaterials, but their properties and applications are hindered by the multi-step synthesis and purification routes, as well as the lack of desired supporting substrates. To enhance optical performance and working efficiency, the synthesis and applications of AuNCs are suggested to be merged with emerging substrates. Herein, glutathione-modified hydrophilic rice papers are incubated in chloroauric acid aqueous solutions, and the oxidation-reduction reaction between glutathione and Au ions enables the in situ formation of fluorescent AuNCs on the solid fibres of rice papers. The in situ growth of fluorescent AuNCs on rice papers resulted in eye-catching fluorescence tracks, similar to traditional Chinese conventional calligraphy; thus, this fluoresence calligraphy is defined in this work. The entire process, including synthesis and signal responses, is extremely simple, rapid, and repeatable. Moreover, the diversity of additive chemical reagents in the studied rice papers resulted in responsive fluorescence calligraphy, and the as-synthesized AuNC materials exhibited high reliability and optical stability. Significantly, with the integration of synchronous formation and application of Au nanoclusters on hydrophilic paper substrates, high-performance logical gates and information encryption systems were constructed, remarkably facilitating the progress of molecular sensing and important information transmission.
Collapse
Affiliation(s)
- Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Dun Ying Guo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zi Bo Qu
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
6
|
Yang L, Hou P, Wei J, Li B, Gao A, Yuan Z. Recent Advances in Gold Nanocluster-Based Biosensing and Therapy: A Review. Molecules 2024; 29:1574. [PMID: 38611853 PMCID: PMC11013830 DOI: 10.3390/molecules29071574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.
Collapse
Affiliation(s)
| | | | | | | | - Aijun Gao
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- College of Chemistry, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Xu J, Li Y, Yan F. Constructed MXene matrix composites as sensing material and applications thereof: A review. Anal Chim Acta 2024; 1288:342027. [PMID: 38220263 DOI: 10.1016/j.aca.2023.342027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 01/16/2024]
Abstract
Most studies on MXene matrix composites for sensor development have primarily focused on synthesis and application. Nevertheless, there is currently a lack of research on how the introduction of different materials affects the sensing properties of these composites. The rapid development of MXene has raised intriguing questions about improving sensor performance by combining MXene with other materials such as polymers, metals and inorganic non-metals. This review will concentrate on the construction of MXene-based composites and explore ways to enhance their sensor applications. Specifically, this review describes why the introduction of materials to the system brings the advantage of low concentration and high sensitivity assays, as well as the MXene-based frameworks that have been recently investigated. Lastly, in order to capture the current trend of MXene-based composites in sensor applications and identify promising research directions, this review will critically evaluate the potential applications of newly developed MXene systems.
Collapse
Affiliation(s)
- Jinyun Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Yating Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Pharmaceutical Sciences, Tiangong University, Tianjin, 300387, PR China.
| |
Collapse
|
8
|
Shi Y, Wu Z, Qi M, Liu C, Dong W, Sun W, Wang X, Jiang F, Zhong Y, Nan D, Zhang Y, Li C, Wang L, Bai X. Multiscale Bioresponses of Metal Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310529. [PMID: 38145555 DOI: 10.1002/adma.202310529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Metal nanoclusters (NCs) are well-recognized novel nano-agents that hold great promise for applications in nanomedicine because of their ultrafine size, low toxicity, and high renal clearance. As foreign substances, however, an in-depth understanding of the bioresponses to metal NCs is necessary but is still far from being realized. Herein, this review is deployed to summarize the biofates of metal NCs at various biological levels, emphasizing their multiscale bioresponses at the molecular, cellular, and organismal levels. In the parts-to-whole schema, the interactions between biomolecules and metal NCs are discussed, presenting typical protein-dictated nano-bio interfaces, hierarchical structures, and in vivo trajectories. Then, the accumulation, internalization, and metabolic evolution of metal NCs in the cellular environment and as-imparted theranostic functionalization are demonstrated. The organismal metabolism and transportation processes of the metal NCs are subsequently distilled. Finally, this review ends with the conclusions and perspectives on the outstanding issues of metal NC-mediated bioresponses in the near future. This review is expected to provide inspiration for tailoring the customization of metal NC-based nano-agents to meet practical requirements in different sectors of nanomedicine.
Collapse
Affiliation(s)
- Yujia Shi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Manlin Qi
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Chengyu Liu
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenyue Sun
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Feng Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Di Nan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chunyan Li
- Department of Prosthodontics, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Bahadur R, Singh B, Rai D, Srivastava R. Influence of PEGylation on WS 2 Nanosheets and Its Application in Photothermal Therapy. ACS APPLIED BIO MATERIALS 2023; 6:4740-4748. [PMID: 37897438 DOI: 10.1021/acsabm.3c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Photothermal therapy (PTT) is an alternative cancer therapy with minimal side effects and higher efficiency and selectivity. In this study, WS2 nanosheets were developed by ultrasonic exfoliation with different ratios of polyethylene glycol (PEG), and their effects on physicochemical properties were studied. The utilization of PEG during sonication significantly influenced the size and thickness of the resulting WS2 nanosheet layers, which was confirmed through scanning electron microscopy, atomic force microscopy, and dynamic light scattering analyses. PEG functionalization also improved the dispersibility of WS2 in aqueous solution by making its surface hydrophilic, which resulted in better biocompatibility. The intrinsic near-infrared absorbance of the nanosheets positions them as valuable agents for PTT. The study further explores the efficacy of these nanosheets as photothermal agents in the ablation of MDAMB-231 breast cancer cells. Although the use of PEG to demonstrate exfoliation and biocompatibility for WS2 has been reported previously, the effect of PEGylation on various physicochemical properties has not been studied in-depth until now. This study paves the way for the use of highly versatile PEG across a range of 2D material systems.
Collapse
Affiliation(s)
- Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India
- Centre for Research in Nano Technology & Science (CRNTS), Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India
| | - Deepika Rai
- Smidt Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, California 90048, United States
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay (IITB), Powai, Mumbai 400076, India
| |
Collapse
|