1
|
Deriu C, Fabris L. A surface chemistry perspective on SERS: revisiting the basics to push the field forward. Chem Soc Rev 2025. [PMID: 40134302 PMCID: PMC11937889 DOI: 10.1039/d4cs01242a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 03/27/2025]
Abstract
Surfaces are well known to be complex entities that are extremely difficult to study, and any phenomenon that is related to them is consequently challenging to approach. Moving from the bulk to the nanoscale adds a further layer of complexity to the problem. Because SERS relies on surfaces at the nanoscale, a rigorous understanding of the chemical phenomena that concur in the observation of the SERS signal is still limited or disorganized at best. Specifically, the lack of understanding of the chemical properties of nanoparticle surfaces has direct consequences on the development of SERS-based devices, causing a widespread belief that SERS is an inherently unreliable and fundamentally irreproducible analytical technique. Herein, we discuss old and new literature from SERS and related fields to accompany the reader through a journey that explores the chemical nature and architecture of colloidal plasmonic nanoparticles as the most popular SERS-active surfaces. By examining the chemistry of the surface landscape of the most common SERS colloids and the thermodynamic equilibria that characterize it, we aim to paint a chemically realistic picture of what a SERS analyst deals with on a daily basis. Thus, our goal for this review is to provide a centralized compilation of key, state-of-the-art surface chemistry information that can guide the rational development of analytical protocols and contribute an additional path through which our community can continue to advance SERS as a reliable and robust analytical tool.
Collapse
Affiliation(s)
- Chiara Deriu
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy.
| |
Collapse
|
2
|
Kluitmann J, Csáki A, Fritzsche W, Köhler JM. Tuning the Growth Pattern of Triangular Silver Nanoplates from Lateral to Vertical by Secondary Metal Addition. Chemphyschem 2025; 26:e202400823. [PMID: 39703072 DOI: 10.1002/cphc.202400823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/20/2024] [Indexed: 12/21/2024]
Abstract
We are presenting an easy synthetic access to the aqueous synthesis of truncated trigonal silver nanobipyramids with tunable width and height in a facile two step synthesis. We modified a synthesis that employs seed particles with twinning faults on which silver is deposited laterally along the twinning fault, leading to flat particles. The ratio of lateral and vertical growth is adjusted by the co-titration of further noble metal salts at nanomolar concentrations alongside the silver precursor. Thus, besides the edge lengths, the thickness and related aspect ratio of metal bipyramids can be tuned. By tracking the growth of the particles via their localized surface plasmon resonance position during the reaction using optical transmission spectroscopy, we present insights into the modification of the growth mechanism for truncated silver nanobipyramids.
Collapse
Affiliation(s)
- Jonas Kluitmann
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnology, TU Ilmenau, Weimarer Straße 32, 98693, Ilmenau, Germany
| | - Andrea Csáki
- Nanobiophotonics Department, Molecular Plasmonics Group, Leibniz IPHT Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Molecular Plasmonics Group, Leibniz IPHT Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Johann Michael Köhler
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnology, TU Ilmenau, Weimarer Straße 32, 98693, Ilmenau, Germany
| |
Collapse
|
3
|
Qi X. Opportunities and challenges in modelling ligand adsorption on semiconductor nanocrystals. Commun Chem 2025; 8:79. [PMID: 40082659 PMCID: PMC11906833 DOI: 10.1038/s42004-025-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
Semiconductor nanocrystals, including their superstructures and hybridized systems, have opened up a new realm to design next-generation functional materials creatively. Their great success and unlimited potential should be largely attributed to surface-adsorbed ligands. However, due to a lack of means to probe and understand their roles in experiments, only a handful of effective ligands have been identified through trial-and-error processes. Alternatively, computational and theoretical methods are ideal for providing physical insights and further guidance. Still, their applications in ligand-coated semiconductor nanocrystals are relatively scarce compared to those of other systems, such as biological chemistry. In this perspective, we first highlight the success of ab initio methods in modeling ligand adsorption. Then, we discuss the opportunities of molecular dynamics and theory in accommodating complex colloidal nature, where we unfold the challenges therein. Finally, we emphasize the need for high-quality force fields to resolve these challenges and look forward to simulation-guided inverse design.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemistry, Dartmouth College, 41 College St., Hanover, 03755, NH, USA.
| |
Collapse
|
4
|
Canning GA, Ogozaly S, Pekarcik M, Lieb CA, Jharimune S, Pfukwa R, Klumperman B, Rioux RM. Complementary Reducing Agents are Responsible for Temporally Distinct Nucleation and Growth Phases During the Polyol Synthesis of Ag Nanocubes. Angew Chem Int Ed Engl 2025; 64:e202418611. [PMID: 39714347 DOI: 10.1002/anie.202418611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Ethylene glycol or one of its oxidation products are believed to serve as reducing agents in the shape-controlled synthesis of Ag nanocubes (NCs) by the polyol process. The identity of end-groups of polyvinylpyrrolidone (PVP) impacts shape control with alcohol and aldehyde moieties serving as a primary Ag reducing agent. We explored the role of PVP end-groups in the polyol process by measuring the dependence of particle number density of Ag NCs produced on the initial concentration(s) of Ag and PVP using small angle x-ray scattering and statistically large particle size distributions analyzed by scanning electron microscopy. The number density of Ag NCs is strongly dependent on the starting concentration of PVP chains demonstrating PVP end-groups play an important role in the nucleation of NCs. The concentration of Ag+ is 2 orders of magnitude higher than the end-groups suggesting ethylene glycol must participate in the reduction of Ag+ during growth. Perturbation experiments and analysis of resultant particle size distribution reveal nucleation is fast relative to growth of NCs, reinforcing the synergy between PVP end-groups and ethylene glycol. The evidence demonstrates PVP end-groups and ethylene glycol are tandem reducing agents operative in temporally distinct phases of the polyol synthesis of Ag NCs.
Collapse
Affiliation(s)
- Griffin A Canning
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA, 16802
| | - Susanna Ogozaly
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA, 16802
| | - Matthew Pekarcik
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA, 16802
| | - Christopher A Lieb
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA, 16802
| | - Suprita Jharimune
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA, 16802
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Bert Klumperman
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Robert M Rioux
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA, 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA, 16802
| |
Collapse
|
5
|
Qiu J, Li J, Li W, Wang K, Zhang S, Suk CH, Wu C, Zhou X, Zhang Y, Guo T, Kim TW. Advancements in Nanowire-Based Devices for Neuromorphic Computing: A Review. ACS NANO 2024; 18:31632-31659. [PMID: 39499041 DOI: 10.1021/acsnano.4c10170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Neuromorphic computing, inspired by the highly interconnected and energy-efficient way the human brain processes information, has emerged as a promising technology for post-Moore's law era. This emerging technology can emulate the structures and the functions of the human brain and is expected to overcome the fundamental limitation of the current von Neumann computing architecture. Neuromorphic devices stand out as the key components of future electronic systems, exhibiting potential in shaping the landscape of neuromorphic computing. Especially, nanowire (NW)-based neuromorphic devices, with their advantages of high integration, high-speed computing, and low power consumption, have recently emerged as candidates for neuromorphic computing technology. Here, a critical overview of the current development and relevant research in the field of NW-based neuromorphic devices are provided. Neuromorphic devices based on different NW materials are comprehensively discussed, including Ag NW-based, organic NW-based, metal oxide NW-based, and semiconductor NW-based devices. Finally, as a foresight perspective, the potentials and the challenges of these NW-based neuromorphic devices for use as future brain-like electronics are discussed.
Collapse
Affiliation(s)
- Jiawen Qiu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Junlong Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wenhao Li
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Kun Wang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shuqian Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chan Hee Suk
- Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chaoxing Wu
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Xiongtu Zhou
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Yongai Zhang
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tailiang Guo
- College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Tae Whan Kim
- Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Liu F, Robinson WL, Kirscht T, Fichthorn KA, Jiang S. Biobased Polymers Enabling the Synthesis of Ultralong Silver Nanowires and Other Nanostructures. NANO LETTERS 2024; 24:14381-14388. [PMID: 39475371 DOI: 10.1021/acs.nanolett.4c04130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Conventional polyol synthesis of silver nanowires has exclusively relied on polyvinylpyrrolidone (PVP), a nonbiodegradable polymer with no viable alternatives. The underlying reaction mechanism remains unclear. Herein, we discovered a new sustainable solution by employing biobased cellulose derivatives, including hydroxyethyl cellulose (HEC), as effective substitutes for PVP. Under mild reaction conditions (125 °C, ambient pressure), HEC facilitates the growth of ultralong silver nanowires (>100 μm) from penta-twinned silver seeds through a four-stage kinetic process. Theoretical calculations further reveal that HEC is physiosorbed onto the silver surfaces, while the presence of bromide ions (Br-) facilitates the evolution of seeds into nanowires. By varying halide ion concentrations and substitution in different cellulose derivatives, we successfully synthesized silver nanostructures with additional intriguing morphologies, including quasi-spherical nanoparticles, bipyramids, and nanocubes. Furthermore, transparent conductive films fabricated from ultralong silver nanowires synthesized with HEC demonstrated superior performance compared to those made with PVP-synthesized nanowires.
Collapse
Affiliation(s)
- Fei Liu
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - William L Robinson
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tyler Kirscht
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shan Jiang
- Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Zhang H, Khan MA, Yan T, Fichthorn KA. Size and temperature dependent shapes of copper nanocrystals using parallel tempering molecular dynamics. NANOSCALE 2024; 16:11146-11155. [PMID: 38506642 DOI: 10.1039/d4nr00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
We performed parallel-tempering molecular dynamics simulations to predict the temperature- and size-dependent equilibrium shapes of a series of Cu nanocrystals in the 100- to 200-atom size range. Our study indicates that temperature-dependent, solid-solid shape transitions occur frequently for Cu nanocrystals in this size range. Complementary calculations with electronic density functional theory indicate that vibrational entropy favors nanocrystals with a shape intermediate between a decahedron and an icosahedron. Overall, we find that entropy plays a significant role in determining the shapes Cu nanocrystals, so studies aimed at determining minimum-energy shapes may fail to correctly predict shapes observed at experimental temperatures. We also observe significant shape changes with nanocrystal size - sometimes with changes in a single atom. The information from this study could be useful in efforts to devise processing routes to achieve selective nanocrystal shapes.
Collapse
Affiliation(s)
- Huaizhong Zhang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Mohd Ahmed Khan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Tianyu Yan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Huang Q, Qin D, Xia Y. Seeing is believing: what is on the surface of silver nanocrystals suspended in their original reaction solution. Chem Sci 2024; 15:6321-6330. [PMID: 38699255 PMCID: PMC11062097 DOI: 10.1039/d4sc00730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Colloidal synthesis of inorganic nanocrystals always involves a multitude of ionic and molecular species. How the chemical species affect the evolution of nanocrystals remains a black box. As an essential ingredient in the polyol synthesis of Ag nanocubes, Cl- has been proposed to co-adsorb on the surface with poly(vinyl pyrrolidone) (PVP) to facilitate shape evolution. However, there is still no direct evidence to confirm the presence of Cl- on the surface of Ag nanocubes while they are suspended in the original reaction solution. By leveraging the high sensitivity of surface-enhanced Raman scattering, here we offer direct evidence, for the first time, by resolving the Ag-Cl vibrational peak at 240 cm-1. This characteristic peak disappears if the synthesis is conducted in the absence of Cl-. Instead, three peaks associated with CF3COO- (from the precursor to Ag) are observed. When the sample is diluted with ethylene glycol, all the peaks associated with CF3COO- decrease proportionally in intensity, implying the involvement of chemisorption and negligible desorption during dilution. The chemisorbed CF3COO- is readily replaced by Cl- due to their major difference in binding strength. The co-adsorbed Cl- forces the carbonyl group of PVP binding to the Ag surface to take a more perpendicular configuration, enhancing its peak intensity. Altogether, these findings shed new light on the roles played by various chemical species in a successful synthesis of Ag nanocubes.
Collapse
Affiliation(s)
- Qijia Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Dong Qin
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Younan Xia
- School of Chemistry and Biochemistry, Georgia Institute of Technology Atlanta Georgia 30332 USA
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta Georgia 30332 USA
| |
Collapse
|
9
|
Zhang W, Zhang H, Li J, Zou X, Wang W, Hu H, Iqbal K, Zhou P, Ye W. PVP-capped silver nanoparticles for efficient SERS detection of adenine based on the stabilizing and enrichment roles of PVP. Mikrochim Acta 2023; 191:1. [PMID: 38040940 DOI: 10.1007/s00604-023-06047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/14/2023] [Indexed: 12/03/2023]
Abstract
A polyvinylpyrrolidone-capped (PVP-capped) strategy is reported to synthesize Ag NPs on silicon wafers via galvanic replacement reaction for SERS detection of adenine, where PVP acts as stabilizing agent in synthesis and efficient enrichment in detection. The morphologies of Ag NPs are optimized with uniform particle size by adjusting synthesis conditions, which hold excellent SERS performances like a high enhancement factor of 1.42 × 106, good uniform, reproducibility, and transferable nature. With the protection of the capped PVP, the Ag NPs keep excellent SERS properties even against harsh conditions of high temperature (100 ℃) and strong acid and base for 24 h. Utilizing the structural feature of PVP with abundant carbonyl groups, the PVP-capped Ag NPs achieve efficient enrichment of adenine through hydrogen bonding and π-interactions, which is analyzed by density functional theory. Quantitative detection of adenine is performed with a wide linear range from 10-4 to 10-8 M and a low limit of detection of 1 nM. Detection of adenine in human urine samples is achieved with a recovery of 99.1-103.4% and an RSD of less than 5%.
Collapse
Affiliation(s)
- Wenshuo Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hairong Zhang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Jiaxin Li
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xiangqing Zou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Wanru Wang
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Haiyan Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Kanwal Iqbal
- Department of Chemistry, Sardar Bahadur Khan Women's University, Quetta, 87300, Pakistan.
| | - Panpan Zhou
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
| | - Weichun Ye
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China.
- Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Yan T, Zhang H, Fichthorn KA. Minimum Free-Energy Shapes of Ag Nanocrystals: Vacuum vs Solution. ACS NANO 2023; 17:19288-19304. [PMID: 37781898 DOI: 10.1021/acsnano.3c06395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
We use two variants of replica-exchange molecular dynamics (MD) simulations, parallel tempering MD and partial replica exchange MD, to probe the minimum free-energy shapes of Ag nanocrystals containing 100-200 atoms in a vacuum, ethylene glycol (EG) solvent, and EG solvent with a PVP polymer containing 100 repeat units. Our simulations reveal a shape intermediate between a Dh and an Ih, a Dh-Ih, that has distinct structural signatures and magic sizes. We find several prominent features associated with entropy: pure FCC nanocrystals are less common than FCC crystals containing stacking faults, and crystals with the minimum potential energy are not always preferred over the range of relevant temperatures. The shapes of the nanocrystals in solution are influenced by the chemical identities of the solution-phase molecules. Comparing Ag nanocrystal shapes in EG to those in an EG+PVP solution, we find more icosahedra in EG and more decahedra in EG+PVP across all of the nanocrystal sizes probed in this study. At certain critical sizes, nanocrystal shapes can change dramatically with the addition and removal of a single atom or with a change in temperature at a fixed size. The information in our study could be useful in efforts to devise processing routes to achieve selective nanocrystal shapes.
Collapse
Affiliation(s)
- Tianyu Yan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huaizhong Zhang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|