1
|
Farshadfar K, Laasonen K. Comparison of the Efficiency of B-O and B-C Bond Formation Pathways in Borane-Catalyzed Carbene Transfer Reactions Using α-Diazocarbonyl Precursors: A Combined Density Functional Theory and Machine Learning Study. ACS Catal 2024; 14:14486-14496. [PMID: 39445172 PMCID: PMC11494835 DOI: 10.1021/acscatal.4c03368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Lewis acidic boranes, especially tris(pentafluorophenyl)borane [B(C6F5)3], have emerged as metal-free catalysts for carbene transfer reactions of α-diazocarbonyl compounds in a variety of functionalization reactions. The established mechanism for how borane facilitates carbene generation for these compounds in the scientific community is based on the formation of a B-O (C=O) intermediate (path O). Herein, we report an extensive DFT study that challenges the notion of a ubiquitous path O, revealing that B-C(=N=N) bond formation (path C) for certain diazocarbonyl substrates proves to be the preferred pathway. This study elucidates, through the introduction of 22 various substituents on each side of the α-diazocarbonyl backbone, how the electron-donating and -withdrawing properties of substituents influence the competition between these B-O and B-C pathways. To elucidate the impact of the electronic features of diazo substrates on the competition between the O and C pathways in the studied dataset, we employed a machine learning approach based on the Random Forest model. This analysis revealed that substrates with higher electron density on the diazo-attached carbon, lower electron density on the carbonyl carbon, and more stable HOMO orbitals tend to proceed via path C. Furthermore, this study not only demonstrates that borane efficiency in facilitating N2 release is greatly affected by the nature of substituents on both sides of the α-diazocarbonyl functionality but also shows that for some substrates, borane is incapable of catalyzing the release of molecular nitrogen.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry and
Material Science, School of chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and
Material Science, School of chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
2
|
Yan S, Hao Y, Xu S, Hai L, Lv G, Wu Y. B(C 6F 5) 3·H 2O-Catalyzed N-H and C-H Functionalization of Aromatic Amines with Sulfoxonium Ylides under Metal-Free Conditions. J Org Chem 2024; 89:13401-13411. [PMID: 39215394 DOI: 10.1021/acs.joc.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydrogen-bonded aggregates of B(C6F5)3 and water are proven as strong Brønsted acid catalysts, which have the advantages of low toxicity and broad compatibility. Sulfoxonium ylides are stable surrogates of diazo compounds, which participate in various reactions due to their versatile reactivity. Based on these characteristics, a strategy for C-N bond or C-C bond construction of aromatic amines with sulfoxonium ylides under metal-free catalytic conditions was established. This method has advantages of mild conditions and excellent yield, which is suitable for the N-H or C-H functionalization of various aromatic amine compounds.
Collapse
Affiliation(s)
- Shenmeng Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu, 610041 Sichuan, P. R. China
| | - Yingdi Hao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu, 610041 Sichuan, P. R. China
| | - Shuran Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu, 610041 Sichuan, P. R. China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu, 610041 Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu, 610041 Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000 Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, Third Section, South Renmin Road, Chengdu, 610041 Sichuan, P. R. China
| |
Collapse
|
3
|
He C, Zhou G, Yang G, Wang F, Lu C, Nie J, Ma C. Borane-Catalyzed Coupling of Diazooxindoles and Difluoroenoxysilanes to Tetrasubstituted Monofluoroalkenes. Org Lett 2024; 26:5539-5543. [PMID: 38913774 DOI: 10.1021/acs.orglett.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A highly stereoselective coupling reaction of diazooxindoles with difluoroenoxysilanes catalyzed by Lewis acidic boranes has been developed. The reaction proceeded at ambient temperature under transition metal-free conditions with wide functional group tolerance. By using this simple procedure, a series of tetrasubstituted monofluoroalkenes can be accessed in good yield with high selectivity.
Collapse
Affiliation(s)
- Chunhu He
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guoyi Zhou
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Guichun Yang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Feiyi Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Cuifen Lu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Junqi Nie
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Chao Ma
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
4
|
Chen F, Zhao XX, Zhang HT, Ma YN, Chen X. Facile Friedel-Crafts alkylation of arenes under solvent-free conditions. Org Biomol Chem 2024; 22:2187-2191. [PMID: 38391292 DOI: 10.1039/d4ob00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The Friedel-Crafts alkylation of arenes is an important part of electrophilic aromatic substitution reactions. However, the reactivity of arenes is weakened by electron-withdrawing substituents, leading to limited substrate scopes and applications. Herein, we developed an efficient HOTf-promoted Friedel-Crafts alkylation reaction of broad arenes with α-aryl-α-diazoesters under metal-free and solvent-free conditions.
Collapse
Affiliation(s)
- Feijing Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xiao-Xiao Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Hao-Tian Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Yan-Na Ma
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Li L, Ning Y, Chen H, Ning Y, Sivaguru P, Liao P, Zhu Q, Ji Y, de Ruiter G, Bi X. Dearomative Insertion of Fluoroalkyl Carbenes into Azoles Leading to Fluoroalkyl Heterocycles with a Quaternary Center. Angew Chem Int Ed Engl 2024; 63:e202313807. [PMID: 37966100 DOI: 10.1002/anie.202313807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The skeletal ring expansion of heteroarenes through carbene insertion is gaining popularity in synthetic chemistry. Efficient strategies for heterocyclic ring expansion to access heterocycles containing a fluoroalkyl quaternary carbon center through fluoroalkyl carbene insertion are highly desirable because of their broad applications in medicinal chemistry. Herein, we report a general strategy for the dearomative one-carbon insertion of azoles using fluoroalkyl N-triftosylhydrazones as fluoroalkyl carbene precursors, resulting in ring-expanded heterocycles in excellent yields with good functional-group compatibility. The broad generality of this methodology in the late-stage diversification of pharmaceutically interesting bioactive molecules and versatile transformations of the products has been demonstrated.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongyue Ning
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Peiqiu Liao
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingwen Zhu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Ji
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Xu S, Zhang Q, Li Y, Luo C, Lai R, Guo L, Hai L, Lv G, Wu Y. Pathway to Construct α-Acyloxy Esters by B(C 6F 5) 3-Catalyzed O-H Insertion of Carboxylic Acids with Sulfoxonium Ylides. J Org Chem 2023; 88:15335-15349. [PMID: 37875403 DOI: 10.1021/acs.joc.3c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We report the first example of B(C6F5)3-catalyzed O-H insertion reaction of sulfoxonium ylides and carboxylic acids, achieving efficient construction of diester moieties under metal-free condition. This protocol is characterized by broad substrate tolerance, particularly for various phenylacetic acids, and good compatibility with water/air condition, which is superior to most other methods.
Collapse
Affiliation(s)
- Shuran Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Qingyao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Yuanyuan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Cankun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| | - Guanghui Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17, third Section, South Renmin Road, Chengdu 610041, Sichuan, P. R. China
| |
Collapse
|