1
|
Naganawa Y, Sakamoto K, Fujita A, Morimoto K, Ratanasak M, Hasegawa JY, Yoshida M, Sato K, Nakajima Y. One-Step Esterification of Phosphoric, Phosphonic and Phosphinic Acids with Organosilicates: Phosphorus Chemical Recycling of Sewage Waste. Angew Chem Int Ed Engl 2025; 64:e202416487. [PMID: 39541227 DOI: 10.1002/anie.202416487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
Global concerns regarding the depletion and strategic importance of phosphorus resources have increased demand for the recovery and recycling. However, waste-derived phosphorus compounds, primarily as chemically inert phosphoric acid or its salts, present a challenge to their direct conversion into high-value chemicals. We aimed to develop an innovative technology that utilizes the large quantities of sewage waste, bypasses the use of white phosphorus, and enables esterification of phosphoric acid to produce widely applicable phosphate triesters. Tetraalkyl orthosilicates emerged as highly effective reagents for the direct triple esterification of 85 % phosphoric acid, as well as the esterification of organophosphinic and phosphonic acids. Furthermore, we achieved esterification of recovered phosphoric acid with tetraalkyl orthosilicate, thus pioneering a recycling pathway from sewage waste to valuable phosphorus chemicals. Experimental and theoretical investigations revealed a novel mechanism, wherein tetraalkyl orthosilicates facilitate multimolecular aggregation to achieve alkyl transfer from tetraalkylorthosilicate to phosphoric acid via multiple proton shuttling.
Collapse
Affiliation(s)
- Yuki Naganawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kei Sakamoto
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Akira Fujita
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuya Morimoto
- Research Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Manussada Ratanasak
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Jun-Ya Hasegawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
2
|
Wen Z, Wang B, Zhao MT, Yang KC, Ni HL, Chen L. Regioselective 1,4-Addition of P(O)-H Species to In Situ -Formed 1-Benzopyrylium Ion from C3-Substituted 2 H-Chromene Hemiketals to Construct C3-Functionalized C4-Phosphorylated 4 H-Chromenes. J Org Chem 2025; 90:1768-1783. [PMID: 39854769 DOI: 10.1021/acs.joc.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Herein, we report the first example that P(O)-H species including H-phosphonates and H-phosphine oxides could participate in a highly regioselective 1,4-addition to in situ generated 1-benzopyrylium ion from C3-substituted 2H-chromene hemiketals, which provides a brand-new and effective approach for the synthesis of C4-phosphorylated 4H-chromenes with diverse C3-functionality (ketone, ester, sulfonyl, aryl, and alkyl groups). In total, the reaction features the use of inexpensive Zn(ClO4)2·6H2O as a catalyst, low catalyst loading (only 5 mol %), mild reaction conditions (60 °C, 10 min to 24 h), and broad substrate scope (46 examples) as well as good to high yields (>90% yield on average). More importantly, mechanistic experiments demonstrated the essential role of the C3-substituent on 2H-chromene hemiketals in stabilizing the in situ generated 1-benzopyrylium ion and the regioselective 1,4-addition control.
Collapse
Affiliation(s)
- Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China
| | - Bin Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China
| | - Mei-Ting Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China
| | - Kai-Cheng Yang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P.R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P.R. China
| |
Collapse
|
3
|
Kumar R, Maurya V, Avinash A, Appayee C. Nonsilyl Bicyclic Secondary Amine Catalysts for the Asymmetric Transfer Hydrogenation of α,β-Unsaturated Aldehydes. J Org Chem 2024; 89:8586-8600. [PMID: 38836633 DOI: 10.1021/acs.joc.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The first chiral synthesis of nonsilyl bicyclic secondary amine organocatalysts and their application to the asymmetric transfer hydrogenation of α,β-unsaturated aldehydes are disclosed. A lower catalytic loading (5 mol %) is demonstrated for the reduction of a wide range of α,β-unsaturated aldehydes (up to 97% yield and up to 99% ee). The application of this scalable methodology is showcased for the asymmetric synthesis of bioactive molecules such as phenoxanol, citronellol, ramelteon, and terikalant.
Collapse
Affiliation(s)
- Rohtash Kumar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Vidyasagar Maurya
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Avinash Avinash
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Chandrakumar Appayee
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
4
|
Keglevich G, Varga PR, Dinnyési E, Szalai Z, Bősze S, Rita OS, Drahos L, Karaghiosoff K. N-Functionalization of β-aminophosphonates: cytotoxic effects of the new derivatives. Org Biomol Chem 2024; 22:3940-3950. [PMID: 38682553 DOI: 10.1039/d4ob00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
β-Aminophosphonates obtained by the Michael addition of primary amines to the double bond of diethyl vinylphosphonate proved to be suitable starting materials (amine components) in the Kabachnik-Fields reaction with formaldehyde and dialkyl phosphites or secondary phosphine oxides to afford N-phosphonylmethyl- and N-phosphinoylmethyl-β-aminophosphonates. On the other hand, the starting aminophosphonates were modified by N-acylation using acid chlorides. The N-acyl products were found to exist in a dynamic equilibrium of two conformers as suggested by the broad NMR signals. At 26 °C, there may be rotation around the N-C axis of the acylamide function. At the same time, low-temperature NMR measurements at -5 °C revealed the presence of two distinct rotamers that could be characterized by 31P, 13C and 1H NMR data. The modified β-aminophosphonic derivatives were subjected to a comparative structure-activity analysis on MDA-MB-231, PC-3, A431 and Ebc-1 tumor cell lines, and in a few cases, significant activity was detected.
Collapse
Affiliation(s)
- György Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Petra Regina Varga
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Emőke Dinnyési
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Zsuzsanna Szalai
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.
| | - Szilvia Bősze
- HUN-REN-ELTE, Research Group of Peptide Chemistry, Hungarian Research Network, H-1117 Budapest, Hungary
| | - Oláhné Szabó Rita
- HUN-REN-ELTE, Research Group of Peptide Chemistry, Hungarian Research Network, H-1117 Budapest, Hungary
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universitat München, Butenandtstr. 5-13, D-81377 München, Germany.
| |
Collapse
|