1
|
Yuts Y, McCabe R, Krell M, Bohley M, Leroux JC. 4D printing of biodegradable intestinal drug delivery devices with shape-memory effect. Int J Pharm 2025; 669:125051. [PMID: 39645064 DOI: 10.1016/j.ijpharm.2024.125051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Expanding devices designed to physically facilitate the permeation of drugs across the gastrointestinal mucosa are gaining attention for the oral delivery of therapeutic macromolecules. The ideal system should be biodegradable with latex-like properties, allowing it to withstand gut movement without breaking prematurely and preventing intestinal obstruction or damage. A highly foldable and elastic device is desirable because it can fit into commercial capsules by being compressed into confined spaces. However, this compression has limits due to the device's tendency to spring back to its original shape driven by stored elastic energy after deformation. This challenge can be addressed by using shape-memory polymers. In this work, we report a photo-crosslinkable resin suitable for 3D printing by digital light processing that yields an elastomer with latex-like properties, shape-recovery at body temperature, and degradation within 6 h under simulated intestinal conditions. Thermal shape-memory was conferred by adding stearyl(acrylate) to poly(β-aminoester)-based inks, achieving high elasticity (>700 %) and strength (>7.5 MPa), along with strain-hardening properties.
Collapse
Affiliation(s)
- Yulia Yuts
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Reece McCabe
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland; Department of Health Technology, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Maya Krell
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Marilena Bohley
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich 8093, Switzerland.
| |
Collapse
|
2
|
Hu Y, Luo Z, Bao Y. Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications. Biomacromolecules 2025; 26:85-117. [PMID: 39625843 PMCID: PMC11733939 DOI: 10.1021/acs.biomac.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/14/2025]
Abstract
Since its invention in the 1980s, photopolymerization-based 3D printing has attracted significant attention for its capability to fabricate complex microstructures with high precision, by leveraging light patterning to initiate polymerization and cross-linking in liquid resin materials. Such precision makes it particularly suitable for biomedical applications, in particular, advanced and customized drug delivery systems. This review summarizes the latest advancements in photopolymerization 3D printing technology and the development of biocompatible and/or biodegradable materials that have been used or shown potential in the field of drug delivery. The drug loading methods and release characteristics of the 3D printing drug delivery systems are summarized. Importantly, recent trends in the drug delivery applications based on photopolymerization 3D printing, including oral formulations, microneedles, implantable devices, microrobots and recently emerging systems, are analyzed. In the end, the challenges and opportunities in photopolymerization 3D printing for customized drug delivery are discussed.
Collapse
Affiliation(s)
- Yu Hu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yinyin Bao
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Cheng X, Xu B, Lei B, Wang S. Opposite Mechanical Preference of Bone/Nerve Regeneration in 3D-Printed Bioelastomeric Scaffolds/Conduits Consistently Correlated with YAP-Mediated Stem Cell Osteo/Neuro-Genesis. Adv Healthc Mater 2024; 13:e2301158. [PMID: 38211963 DOI: 10.1002/adhm.202301158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/31/2023] [Indexed: 01/13/2024]
Abstract
To systematically unveil how substrate stiffness, a critical factor in directing cell fate through mechanotransduction, correlates with tissue regeneration, novel biodegradable and photo-curable poly(trimethylene carbonate) fumarates (PTMCFs) for fabricating elastomeric 2D substrates and 3D bone scaffolds/nerve conduits, are presented. These substrates and structures with adjustable stiffness serve as a unique platform to evaluate how this mechanical cue affects the fate of human umbilical cord mesenchymal stem cells (hMSCs) and hard/soft tissue regeneration in rat femur bone defect and sciatic nerve transection models; whilst, decoupling from topographical and chemical cues. In addition to a positive relationship between substrate stiffness (tensile modulus: 90-990 kPa) and hMSC adhesion, spreading, and proliferation mediated through Yes-associated protein (YAP), opposite mechanical preference is revealed in the osteogenesis and neurogenesis of hMSCs as they are significantly enhanced on the stiff and compliant substrates, respectively. In vivo tissue regeneration demonstrates the same trend: bone regeneration prefers the stiffer scaffolds; while, nerve regeneration prefers the more compliant conduits. Whole-transcriptome analysis further shows that upregulation of Rho GTPase activity and the downstream genes in the compliant group promote nerve repair, providing critical insight into the design strategies of biomaterials for stem cell regulation and hard/soft tissue regeneration through mechanotransduction.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bowen Xu
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shanfeng Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Paunović N, Meyer D, Krivitsky A, Studart AR, Bao Y, Leroux JC. 4D printing of biodegradable elastomers with tailorable thermal response at physiological temperature. J Control Release 2023; 361:417-426. [PMID: 37532144 DOI: 10.1016/j.jconrel.2023.07.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
4D printing has a great potential for the manufacturing of soft robotics and medical devices. The alliance of digital light processing (DLP) 3D printing and novel shape-memory photopolymers allows for the fabrication of smart 4D-printed medical devices in high resolution and with tailorable functionalities. However, most of the reported 4D-printed materials are nondegradable, which limits their clinical applications. On the other hand, 4D printing of biodegradable shape-memory elastomers is highly challenging, especially when transition points close to physiological temperature and shape fixation under ambient conditions are required. Here, we report the 4D printing of biodegradable shape-memory elastomers with tailorable transition points covering physiological temperature, by using poly(D,L-lactide-co-trimethylene carbonate) methacrylates at various monomer feed ratios. After the programming step, the high-resolution DLP printed stents preserved their folded shape at room temperature, and showed efficient shape recovery at 37 °C. The materials were cytocompatible and readily degradable under physiological conditions. Furthermore, drug-loaded devices with tuneable release kinetics were realized by DLP-printing with resins containing polymers and levofloxacin or nintedanib. This study offers a new perspective for the development of next-generation 4D-printed medical devices.
Collapse
Affiliation(s)
- N Paunović
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - D Meyer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - A Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - A R Studart
- Complex Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Y Bao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - J-C Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
5
|
Bao Y. Recent Trends in Advanced Photoinitiators for Vat Photopolymerization 3D Printing. Macromol Rapid Commun 2022; 43:e2200202. [PMID: 35579565 DOI: 10.1002/marc.202200202] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Indexed: 11/11/2022]
Abstract
3D printing has revolutionized the way of manufacturing with a huge impact on various fields, in particular biomedicine. Vat photopolymerization-based 3D printing techniques such as stereolithography (SLA) and digital light processing (DLP) attracted considerable attention owing to their superior print resolution, relatively high speed, low cost and flexibility in resin material design. As one key element of the SLA/DLP resin, photoinitiators or photoinitiating systems have experienced significant development in recent years, in parallel with the exploration of 3D printing (macro)monomers. The design of new photoinitiating systems can not only offer faster 3D printing speed and enable low-energy visible light fabrication, but also can bring new functions to the 3D printed products and even generate new printing methods in combination with advanced optics. This review evaluates recent trends in the development and application of advanced photoinitiators and photoinitiating systems for vat photopolymerization 3D printing, with a wide range of small molecules, polymers and nanoassemblies involved. Personal perspectives on the current limitations and future directions are eventually provided. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, 8093, Switzerland
| |
Collapse
|