1
|
Guo T, Gao C, Li Z, Hu P, Chen H, Han S, Zhao Y, Zhu C. Visible-light-induced cascade chromone cyclization/chalcogenation to access 3-chalcogenyl-chromones using elemental sulfur/selenium. Chem Commun (Camb) 2024; 60:14866-14869. [PMID: 39588611 DOI: 10.1039/d4cc04609a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
A mild and efficient visible-light-induced cascade undergoing a chromone cyclization/chalcogenation at room temperature has been developed. This three-component reaction employs user-friendly elemental S8 and Se as the chalcogenide source, providing an attractive route for the convenient synthesis of 3-chalcogenyl-chromones with a wide substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Chuanhu Gao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Zhonghui Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Penghua Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, P. R. China
| | - Shulei Han
- China National Tobacco Quality Supervision and Test Center, Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, P. R. China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Congjun Zhu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
2
|
Chen J, Bai X, Jiang H, Zhao C, Li Y, Chu M, Li Y, Zhang M, Chen L. Metal-free radical selenothiocyanation of terminal and internal alkynes. Chem Commun (Camb) 2024; 60:10196-10199. [PMID: 39192807 DOI: 10.1039/d4cc03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report herein a synthetic strategy for the generation of direct selenothiocyanation from both terminal and internal alkynes via a radical process. Alkynes derived from bioactive molecules, such as L(-)-borneol and L-menthol, are suitable for selenothiocyanation reaction. This method features metal-free conditions and readily available reagents.
Collapse
Affiliation(s)
- Jiabin Chen
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Xiaoyan Bai
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Haobo Jiang
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Ya Li
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Mingming Chu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Yiming Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China.
| | - Lu Chen
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| |
Collapse
|
3
|
Di Terlizzi L, Nicchio L, Protti S, Fagnoni M. Visible photons as ideal reagents for the activation of coloured organic compounds. Chem Soc Rev 2024; 53:4926-4975. [PMID: 38596901 DOI: 10.1039/d3cs01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In recent decades, the traceless nature of visible photons has been exploited for the development of efficient synthetic strategies for the photoconversion of colourless compounds, namely, photocatalysis, chromophore activation, and the formation of an electron donor/acceptor (EDA) complex. However, the use of photoreactive coloured organic compounds is the optimal strategy to boost visible photons as ideal reagents in synthetic protocols. In view of such premises, the present review aims to provide its readership with a collection of recent photochemical strategies facilitated via direct light absorption by coloured molecules. The protocols have been classified and presented according to the nature of the intermediate/excited state achieved during the transformation.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Luca Nicchio
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
4
|
Zhao X, Sun T, Gu W, Qin J, Lu K, Ye F. Copper-catalyzed thiocyanation of cyclobutanone oxime esters using ammonium thiocyanate. Org Biomol Chem 2024; 22:1466-1474. [PMID: 38284473 DOI: 10.1039/d3ob01898a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A copper-catalyzed thiocyanation of cycloketone oxime esters with ammonium thiocyanate has been developed for the first time. This innovative approach allows access to cyano and thiocyano bifunctionally substituted alkanes, which can be further transformed into their respective trifluoromethylthiol-substituted or difluoromethylthiol-substituted alkylnitriles, alkynyl sulfides, and phosphorothioate esters. The readily available nature of ammonium thiocyanate and the cost-effectiveness of the copper catalyst make this method a promising strategy for the synthesis of sulfur-containing alkylnitriles.
Collapse
Affiliation(s)
- Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Tengteng Sun
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenxin Gu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Jingwen Qin
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, 300387, China.
| | - Kui Lu
- hina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, C, Tianjin, 300457, China
| | - Fei Ye
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
5
|
Lv Y, Wang Z, Song L, Hao J, Zhu S, Yue H, Wei W, Yi D. Copper-Catalyzed Three-Component Tandem Reaction of Alkynes, α-Diazo Esters, and TMSN 3 to Access N-Substituted 1,2,3-Triazoles. J Org Chem 2023. [PMID: 38047963 DOI: 10.1021/acs.joc.3c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An efficient copper-catalyzed three-component tandem reaction of alkynes, α-diazo esters, and TMSN3 to construct triazoles has been developed. Through this strategy, a number of diverse N-substituted 1,2,3-triazoles were conveniently obtained in moderate to good yields from simple and readily available starting materials using K2CO3 as the base. The mechanism of the tandem Cu-catalyzed azide-alkyne cycloaddition (CuAAC) and Cu-carbenoid-participated C-N coupling reaction has been investigated.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhiwei Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Lianhui Song
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Jindong Hao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shuyun Zhu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wei Wei
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
6
|
Xia S, Jian Y, Zhang L, Zhang C, An Y, Wang Y. Visible-light-promoted N-H functionalization of O-substituted hydroxamic acid with diazo esters. RSC Adv 2023; 13:14501-14505. [PMID: 37188246 PMCID: PMC10176041 DOI: 10.1039/d3ra02407e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Herein we report an N-H functionalization of O-substituted hydroxamic acid with diazo esters under blue LED irradiation conditions. The present transformations could be performed efficiently under mild conditions without use of catalyst, additive and N2 atmosphere. Interestingly, when THF and 1,4-dioxane were employed as the reaction solvents, an active oxonium ylide involved three-component reaction and an N-H insertion of carbene species into hydroxamate occurred, respectively.
Collapse
Affiliation(s)
- Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Liwen Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Cheng Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
7
|
Quan L, Xiao Y, Zhou A, Zhu X, Mao L, Wan J. Visible‐Light‐Promoted Tandem Oxyphosphorylation Etherification of α‐Diazoesters to Access Phosphoric Esters. ChemistrySelect 2023. [DOI: 10.1002/slct.202204778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li‐Xia Quan
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Yi Xiao
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Anxi Zhou
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Xianhong Zhu
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Liu‐Liang Mao
- College of Chemistry and Environment Science Shangrao Normal University Shangrao 334001 PR China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 PR China
- International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 PR China
| |
Collapse
|
8
|
Qu C, Hao J, Ding H, Lv Y, Zhao XE, Zhao X, Wei W. Visible-Light-Initiated Multicomponent Reactions of α-Diazoesters to Access Organophosphorus Compounds. J Org Chem 2022; 87:12921-12931. [PMID: 36130274 DOI: 10.1021/acs.joc.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A simple visible-light-initiated strategy has been established for the construction of organophosphorus compounds via aerobic multicomponent reaction of α-diazoesters, cyclic ethers, and P(O)H compounds under air. A number of phosphonates and phosphinates could be efficiently isolated in moderate to good yields without the use of photosensitizers and metal reagents. This multicomponent reaction has advantages of mild condition, simple operation, eco-friendly energy, good functional-group tolerance, and gram-scale synthesis.
Collapse
Affiliation(s)
- Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R. China
| |
Collapse
|
9
|
Ding H, Wang Z, Qu C, Lv Y, Zhao X, Wei W. Visible-light-mediated multi-component carbene transfer reactions of α-diazoesters to construct multisubstituted pyrazoles and 1,3-dicarbonyl derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo01082h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-promoted strategy has been developed for the assembly of multisubstituted pyrazoles and 1,3-dicarbonyl derivatives via a multi-component carbene transfer reaction of α-diazoesters.
Collapse
Affiliation(s)
- Hongyu Ding
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Zhiwei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
| | - Xiaohui Zhao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P.R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P.R. China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P.R. China
| |
Collapse
|