1
|
Li M, Chu G, Gao J, Ye X, Hou M, Guo S, Li Y, Zhou Z, Yang L, Briois P. Electrochemical deposition of bimetallic sulfides on novel BDD electrode for bifunctional alkaline seawater electrolysis. Sci Rep 2025; 15:2862. [PMID: 39843530 PMCID: PMC11754473 DOI: 10.1038/s41598-025-87104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis. However, the challenge of metal corrosion cannot be ignored. In this work, the boron-doped diamond (BDD) with excellent corrosion resistance was explored as a substrate for loading active catalysts in seawater electrolysis. A step-by-step electrodeposition method was used to fabricate the FeCoS/Ni/BDD electrode, effectively addressing the poor adhesion of the FeCoS active layer to the BDD substrate. The resulting electrode demonstrated interesting bifunctional catalytic performance, achieving oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) overpotentials of 425 mV and 360 mV, respectively, in alkaline simulated seawater (1 M KOH and 3.5 wt% NaCl) at a current density of 100 mA cm- 2. Furthermore, by increasing the KOH concentration in the alkaline simulated seawater to 3 M, the OER and HER overpotentials of the electrode significantly decreased to 383 and 300 mV, respectively. This work offers a novel approach for utilizing BDD substrates in the design of corrosion-resistant electrodes for alkaline seawater electrolysis.
Collapse
Affiliation(s)
- Mingxu Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Genjie Chu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiyun Gao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650093, China
| | - Xiaolei Ye
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Ming Hou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Shenghui Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yunchuan Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ziqi Zhou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Li Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Pascal Briois
- FEMTO-ST Institute (UMR CNRS 6174), UBFC/UTBM. Site de Montbéliard, 90010, Belfort, France
| |
Collapse
|
2
|
Vu TV, Hiep NT, Hoa VT, Nguyen CV, Phuc HV, Hoi BD, Kartamyshev AI, Hieu NN. Piezoelectric GaGeX 2 (X = N, P, and As) semiconductors with Raman activity and high carrier mobility for multifunctional applications: a first-principles simulation. RSC Adv 2024; 14:32053-32062. [PMID: 39391622 PMCID: PMC11466001 DOI: 10.1039/d4ra06406b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
In the present work, we propose GaGeX2 (X = N, P, As) monolayers and explore their structural, vibrational, piezoelectric, electronic, and transport characteristics for multifunctional applications based on first-principles simulations. Our analyses of cohesive energy, phonon dispersion spectra, and ab initio molecular dynamics simulations indicate that the three proposed structures have good energetic, dynamic, and thermodynamic stabilities. The GaGeX2 are found as piezoelectric materials with high piezoelectric coefficient d 11 of -1.23 pm V-1 for the GaGeAs2 monolayer. Furthermore, the results from electronic band structures show that the GaGeX2 have semiconductor behaviours with moderate bandgap energies. At the Heyd-Scuseria-Ernzerhof level, the GaGeP2 and GaGeAs2 exhibit optimal bandgaps for photovoltaic applications of 1.75 and 1.15 eV, respectively. Moreover, to examine the transport features of the GaGeX2 monolayers, we calculate their carrier mobility. All three investigated GaGeX2 systems have anisotropic carrier mobility in the two in-plane directions for both electrons and holes. Among them, the GaGeAs2 monolayer shows the highest electron mobilities of 2270.17 and 1788.59 cm2 V-1 s-1 in the x and y directions, respectively. With high electron mobility, large piezoelectric coefficient, and moderate bandgap energy, the GaGeAs2 material holds potential applicability for electronic, optoelectronic, piezoelectric, and photovoltaic applications. Thus, our findings not only predict stable GaGeX2 structures but also provide promising materials to apply for multifunctional devices.
Collapse
Affiliation(s)
- Tuan V Vu
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo T Hoa
- Department of Scientific Management and International Cooperation, Quang Nam University Quang Nam Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University Hanoi 100000 Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Bui D Hoi
- Department of Physics, University of Education, Hue Unversity Hue Vietnam
| | - A I Kartamyshev
- Laboratory for Computational Physics, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam
- Faculty of Mechanical - Electrical and Computer Engineering, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
3
|
Wang Q, Li M, Xi M, Zhao M, Wang X, Chen X, Ding L. Recovery of Ag(I) from Wastewater by Adsorption: Status and Challenges. TOXICS 2024; 12:351. [PMID: 38787130 PMCID: PMC11125793 DOI: 10.3390/toxics12050351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Untreated or inadequately treated silver-containing wastewater may pose adverse effects on hu-man health and the ecological environment. Currently, significant progress has been made in the treatment of Ag(I) in wastewater using adsorption methods, with adsorbents playing a pivotal role in this process. This paper provides a systematic review of various adsorbents for the recovery and treatment of Ag(I) in wastewater, including MOFs, COFs, transition metal sulfides, metal oxides, biomass materials, and other polymeric materials. The adsorption mechanisms of these materials for Ag(I) are elaborated upon, along with the challenges currently faced. Furthermore, insights into optimizing adsorbents and developing novel adsorbents are proposed in this study.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Meng Xi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Mengyuan Zhao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaotong Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoyu Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
- National−Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
4
|
You L, Dong S, Fang Y, Guo Y, Zhu K, Gao Y, Bao T, Wu H, Cao D. A graphene-like hollow sphere anode for lithium-ion batteries. Chem Commun (Camb) 2024; 60:5030-5033. [PMID: 38630296 DOI: 10.1039/d4cc00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report a flash Joule heating method for the rapid preparation of graphene-like materials. The L-GHS exhibited a uniform diameter of 200 nm and an ideal specific surface area of 670 m2 g-1. Meanwhile, the specific capacity of L-GHS remained at 942 mA h g-1 after 600 cycles (1 A g-1), which shows excellent electrochemical performance.
Collapse
Affiliation(s)
- Lili You
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Shu Dong
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Yongzheng Fang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yan Guo
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Yinyi Gao
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Tianzeng Bao
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| | - Hongbin Wu
- Hunan Hongshan New Energy Technology Co., Ltd, Henglongqiao Town, Heshan District, Yiyang City, Hunan Province, China, 413000
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China, 150001
| |
Collapse
|
5
|
Gao Y, Yue X, Dong Y, Zheng Q, Lin D. High-efficiency activated phosphorus-doped Ni 2S 3/Co 3S 4/ZnS nanowire/nanosheet arrays for energy storage of supercapacitors. J Colloid Interface Sci 2024; 658:441-449. [PMID: 38118190 DOI: 10.1016/j.jcis.2023.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
Transition metal sulfides (TMS) have been considered as a promising group of electrode materials for supercapacitors as a result of their strong redox activity, but high volumetric strain of the materials during electrochemical reactions causes rapid structural collapse and severe capacity loss. Herein, we have synthesized phosphorus-doped (P-doped) Ni2S3/Co3S4/ZnS battery-type nanowire/nanosheet arrays as an advanced cathode for supercapacitor through a two-step process of hydrothermal and annealing treatments. The material has a one-dimensional nanowire/two-dimensional nanosheet-like coexisting microscopic morphology, which facilitates the exposure of abundant active centers and promotes the transport and migration of ions in the electrolyte, while the doping of P significantly enhances the conductivity of the electrode material. Simultaneously, the element phosphorus with similar atomic radii and electronegativity to sulfur may act as electron donors to regulate the electron distribution, thus providing more effective electrochemically active sites. In gratitude to the synergistic effect of microstructure optimization and electronic structure regulation induced by the doing of P, the P-Ni2S3/Co3S4/ZnS nanoarrays provide a superior capacity of 2716 F g-1 at 1 A/g, while the assembled P-Ni2S3/Co3S4/ZnS//AC asymmetric supercapacitor exhibits a high energy density of 48.2 Wh kg-1 at a power density of 800 W kg-1 with the capacity retention of 89 % after 9000 cycles. This work reveals a possible method for developing high-performance transition metal sulfide-based battery-like electrode materials for supercapacitors through microstructure optimization and electronic structure regulation.
Collapse
Affiliation(s)
- Yongbo Gao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Xiaoqiu Yue
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Yingxia Dong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Qiaoji Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China
| | - Dunmin Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, PR China.
| |
Collapse
|
6
|
Qin Y, Zhang W, Wang R, Li L, Zhao X, Zhang W. Metal-Organic Frameworks-Derived FeS-Co 9S 8/NCA Porous Aerogel Electrocatalyst as a High-Performance Cathode for Zinc-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1024-1034. [PMID: 38113516 DOI: 10.1021/acs.langmuir.3c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, a novel strategy to establish a porous FeS-Co9S8/carbon aerogel (FeS-Co9S8/NCA) electrocatalyst for oxygen evolution reaction (OER) is fabricated via applying a green biomass carrageenan sulfuration method to CoFe-metal-organic frameworks (MOFs). The FeS-Co9S8/NCA exhibits optimized catalytic activity toward the OER with a lower overpotential of 322 mV, which is overmatched to the majority of transition metal sulfides (TMSs), as well as lifted long-term durability without evident variation in the LSV curves after 3000 cycles. Rechargeable liquid zinc-air battery (ZAB) assembled with FeS-Co9S8/NCA as the OER catalyst indicated a maximum power density of 176 mW cm-2 and superior cycling stability without raised polarization even after 48 h, outperforms commercial RuO2-based ZAB. Furthermore, the flexible solid-state ZAB built with FeS-Co9S8/NCA also demonstrated outdistance properties and bendability. The excellent performance stems from the hierarchical porous aerogel structure, which offers a multiscale mass/electron transport channel, together with the interfacial synergy effect between FeS and Co9S8, which serves as the active site of the OER reaction. Thus, this work instituted a novel strategy for obtaining both clean and efficient transition metal sulfide electrocatalysts for the OER reaction and an environmentally friendly biomass material-based sustainable electrocatalyst.
Collapse
Affiliation(s)
- Yunong Qin
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wanzhihan Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Rui Wang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohui Zhao
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
7
|
Li J, Shi Y, Wang J, Liu Q, Luan L, Li Q, Cao Q, Zhang T, Sun H. Cobalt-doped tin disulfide catalysts for high-capacity lithium-air batteries with high lifetime. Phys Chem Chem Phys 2023; 25:26885-26893. [PMID: 37782482 DOI: 10.1039/d3cp02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual electrolyte lithium-air batteries have received widespread attention for their ultra-high energy density. However, the low internal redox efficiency of these batteries results in a relatively short operating life. SnS2 is widely used in Li-S batteries, Li-ion batteries, photocatalysis, and other fields due to the high discharge capacity in batteries. However, SnS2 suffers from low electrical conductivity and slow redox kinetics. In this study, Co-doped SnS2 is prepared by hydrothermal method for application in dual-electrolyte lithium-air batteries to study its electrochemical performance and its catalytic reaction process by DFT theory. Conductivity tests show that the Co doping enhances the electrical conductivity of the material and high transmission electron microscopy (HRTEM) results demonstrate that the Co doping of SnS2 increases the grain plane spacing and the material indicates that defects are created on the surface of the material, which is more beneficial to the electrochemical performance of the cell. Co-doped SnS2 exhibits excellent good cycling stability and high discharge capacity in a dual electrolyte lithium-air battery, maintaining a 0.7 V overpotential for 120 h at a current density of 0.1 mA cm-2, with a cell life of over 500 h and an initial discharge capacity showing excellent results up to 16 065 mA h g-1. In addition, this study explores the catalytic activity of Co-doped SnS2 based on density flooding theory (DFT). The results show that Co atoms have a synergistic effect with Sn atoms to perturb the lattice parameters. The calculations show that the catalytic activity is enhanced with the increasing of Co doping content and 3Co-Sn exhibits minimal overpotential.
Collapse
Affiliation(s)
- Jie Li
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Yuzhi Shi
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Junhai Wang
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qianhe Liu
- Human Resources Department, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China
| | - Lihua Luan
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qiang Li
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Qinghao Cao
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Tianyu Zhang
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| | - Hong Sun
- School of Mechanical Engineering, Shenyang Jianzhu University, No. 25 Middle Road Hunnan, Shenyang, 110168, China.
| |
Collapse
|
8
|
Ghanem RM, Kospa DA, Ahmed AI, Ibrahim AA, Gebreil A. Construction of thickness-controllable bimetallic sulfides/reduced graphene oxide as a binder-free positive electrode for hybrid supercapacitors. RSC Adv 2023; 13:29252-29269. [PMID: 37809023 PMCID: PMC10551804 DOI: 10.1039/d3ra05326a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023] Open
Abstract
Devices for electrochemical energy storage with exceptional capacitance and rate performance, outstanding energy density, simple fabrication, long-term stability, and remarkable reversibility have always been in high demand. Herein, a high-performance binder-free electrode (3D NiCuS/rGO) was fabricated as a supercapacitor by a simple electrodeposition process on a Ni foam (NF) surface. The thickness of the deposited materials on the NF surface was adjusted by applying a low cycle number of cyclic voltammetry (5 cycles) which produced a thin layer and thus enabled the easier penetration of electrolytes to promote electron and charge transfer. The NiCuS was anchored by graphene layers producing nicely integrated materials leading to a higher electroconductivity and a larger surface area electrode. The as-fabricated electrode displayed a high specific capacitance (2211.029 F g-1 at 5 mV s-1). The NiCuS/rGO/NF//active carbon device can achieve a stable voltage window of 1.5 V with a highly specific capacitance of 84.3 F g-1 at a current density of 1 A g-1. At a power density of 749 W kg-1, a satisfactory energy density of 26.3 W h kg-1 was achieved, with outstanding coulombic efficiency of 100% and an admirable life span of 96.2% after 10 000 GCD cycles suggesting the significant potential of the as-prepared materials for practical supercapacitors.
Collapse
Affiliation(s)
- Ramage M Ghanem
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Doaa A Kospa
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Awad I Ahmed
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Amr Awad Ibrahim
- Department of Chemistry, Faculty of Science, Mansoura University Al-Mansoura 35516 Egypt
| | - Ahmed Gebreil
- Nile Higher Institutes of Engineering and Technology El-Mansoura Egypt
| |
Collapse
|
9
|
Mohamed Ismail KB, Arun Kumar M, Jayavel R, Arivanandhan M, Mohamed Ismail MA. Enhanced electrochemical performance of the MoS 2/Bi 2S 3 nanocomposite-based electrode material prepared by a hydrothermal method for supercapacitor applications. RSC Adv 2023; 13:24272-24285. [PMID: 37583657 PMCID: PMC10424499 DOI: 10.1039/d3ra03892k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023] Open
Abstract
Supercapacitors are widely used energy storage systems in the modern world due to their excellent electrochemical performance, fast charging capability, easy handling, and high power density. In the present work, pure MoS2 and MoS2/Bi2S3 nanocomposites with different compositions of bismuth were synthesized by the hydrothermal method. The structural properties of the electrode materials were studied using the XRD technique, which confirmed the formation of MoS2 and the secondary phase of Bi2S3 while increasing Bi substitution. The morphological studies of the synthesized electrode materials were performed using SEM, TEM, and HRTEM techniques, which indicated the 3D layered hierarchical structure of MoS2 nanospheres and the nanosheet-like structure of Bi2S3. The electrochemical properties of pristine MoS2 and MoS2/Bi2S3 nanocomposites were analysed by CV, CP, and EIS techniques using a 2 M KOH electrolyte in a three-electrode system. The CV curves show evidence of significant improvement in the electrochemical performance of MoS2/Bi2S3 composites compared to that of pure MoS2. The calculated specific capacitances of MoS2/Bi2S3 nanocomposites were relatively higher than those of pristine MoS2. The 20 mol% Bi added sample showed a maximum specific capacitance of 371 F g-1, compared to pristine MoS2 and other samples at a current density of 1 A g-1. The kinetics of the electrochemical process was studied. The Nyquist plots indicated that the Bi-added nanocomposites had lower Resr and RCT values, which resulted in high electrochemical performance. The experimental results revealed that Bi-substitution can further enhance the electrochemical energy storage performance of MoS2 for supercapacitor applications.
Collapse
Affiliation(s)
- Kamal Batcha Mohamed Ismail
- Department of Electrical, Electronics & Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM) Bengaluru-561 203 India +91-7708587758
- Department of Electronics & Communication Engineering, Agni College of Technology Chennai-600 130 Tamil Nadu India
| | - Manoharan Arun Kumar
- Department of Electrical, Electronics & Communication Engineering, School of Technology, Gandhi Institute of Technology and Management (GITAM) Bengaluru-561 203 India +91-7708587758
| | - Ramasamy Jayavel
- Centre for Nanoscience and Technology, Anna University Chennai-600 025 Tamil Nadu India
| | - Mukannan Arivanandhan
- Centre for Nanoscience and Technology, Anna University Chennai-600 025 Tamil Nadu India
| | | |
Collapse
|
10
|
Das M, Das D, Sil S, Ray PP. Development of hierarchical copper sulfide-carbon nanotube (CuS-CNT) composites and utilization of their superior carrier mobility in efficient charge transport towards photodegradation of Rhodamine B under visible light. NANOSCALE ADVANCES 2023; 5:3655-3663. [PMID: 37441255 PMCID: PMC10334374 DOI: 10.1039/d3na00204g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
In this work, the synthesis of visible light sensitive copper sulfide (CuS) nanoparticles and their composites with carbon nanotubes (T-CuS) via a solvothermal technique is reported. The synthesized nanoparticles (NPs) and their composites were significantly characterized by powder X-ray diffraction (PXRD), scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, photoluminescence (PL) spectroscopy and thermogravimetric analysis (TGA). The effect of carbon nanotubes (CNTs) on the crystallinity, microstructures, photo-absorption, photo-excitation, thermal stability and surface area of CuS was investigated. The current-voltage (I vs. V) characteristics of both CuS and T-CuS based Schottky diodes were measured to determine the charge transport parameters like photosensitivity, conductivity, mobility of charge carriers, and transit time. The photocatalytic performance of bare CuS and T-CuS in the decomposition of Rhodamine B dye was studied using a solar simulator. The T-CuS composite showed higher photocatalytic activity (94%) compared to bare CuS (58%). The significance of charge carrier mobility in transferring photo-induced charges (holes and electrons) through complex networks of composites and facilitating the photodegradation process is explained. Finally, the reactive species responsible for the Rhodamine B degradation were also identified.
Collapse
Affiliation(s)
- Mainak Das
- Department of Physics, Jadavpur University Kolkata 700032 India
| | - Dhananjoy Das
- Department of Physics, Jadavpur University Kolkata 700032 India
| | - Sayantan Sil
- Department of Physics, University of Engineering and Management University Area, Action Area III, B/5, Newtown Kolkata 700160 India
| | | |
Collapse
|
11
|
Singh J, Jindal N, Kumar V, Singh K. Role of green chemistry in synthesis and modification of graphene oxide and its application: A review study. CHEMICAL PHYSICS IMPACT 2023; 6:100185. [DOI: 10.1016/j.chphi.2023.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
12
|
Ou J, Chen Y, Zhao J, Luo S, Wong KW, Ng KM. Nano-Sized Calcium Copper Titanate for the Fabrication of High Dielectric Constant Functional Ceramic-Polymer Composites. Polymers (Basel) 2022; 14:polym14204328. [PMID: 36297907 PMCID: PMC9607502 DOI: 10.3390/polym14204328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022] Open
Abstract
A novel calcium copper titanate (CaCu3Ti4O12)–polyvinylidene fluoride composite (CCTO@PVDF) with Cu-deficiency was successfully prepared through the molten salt-assisted method. The morphology and structure of polymer composites uniformly incorporated with CCTO nanocrystals were characterized. At the same volume fraction, the CCTOs with Cu-deficiency displayed higher dielectric constants than those without post-treatment. A relatively high dielectric constant of 939 was obtained at 64% vol% CCTO@PVDF content, 78 times that of pure PVDF. The high dielectric constants of these composites were attributed to the homogeneous dispersion and interfacial polarization of the CCTO into the PVDF matrix. These composites also have prospective applications in high-frequency regions (106 Hz). The enhancement of the dielectric constant was predicted in several theoretical models, among which the EMT and Yamada models agreed well with the experimental results, indicating the excellent distribution in the polymer matrix.
Collapse
Affiliation(s)
- Jinfa Ou
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yonghui Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiafu Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology, Shenzhen University, Shenzhen 518060, China
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
- Correspondence:
| | - Ka Wai Wong
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| | - Ka Ming Ng
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong
| |
Collapse
|
13
|
Wang X, Di F, Farid S, Ren S. Insights into mixed metal sulfides of MnxSn1-xS2 for high-performance supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Zhang R, Du X, Li S, Guan J, Fang Y, Li X, Dai Y, Zhang M. Application of heteroatom doping strategy in electrolyzed water catalytic materials. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|