1
|
Boucher R, Germain H, Desgagné-Penix I. Exploring the Lesser-Known Bioactive Natural Products of Plant Species of the Genus Cannabis L.: Alkaloids, Phenolic Compounds, and Their Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2025; 14:1372. [PMID: 40364401 DOI: 10.3390/plants14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
Plant species of the genus Cannabis L. are predominantly recognized for their cannabinoids, which have garnered significant attention due to their bioactive properties. However, Cannabis also produces a diverse array of bioactive compounds with promising pharmacological potential that remain underexplored. This review focuses primarily on phytochemicals derived from Cannabis sativa L. subspecies, including both its drug-type and fiber-type varieties, which are the most widely cultivated and studied within the genus. Among these, nitrogen-containing compounds such as spermidine alkaloids exhibit neuroprotective and anti-aging properties, while hydroxycinnamic acids and hydroxycinnamic acid amides, including N-trans-caffeoyltyramine and N-trans-feruloyltyramine, have demonstrated notable antioxidant and anti-inflammatory activities. Additionally, Cannabis species are a valuable source of unique stilbenes, such as canniprene, and flavonoids, including cannflavin A and B, which demonstrated potent anti-inflammatory and antiproliferative effects. Despite this rich phytochemical diversity, research on these compounds remains limited, largely due to historical legal restrictions. This literature review consolidates and updates current knowledge on these lesser-studied phytochemicals of Cannabis, detailing their biosynthetic pathways, metabolic precursors, and emerging therapeutic applications. By expanding the research focus beyond cannabinoids, this work aims to enhance our understanding of Cannabis's full pharmacological potential and promote further investigation into its diverse chemical constituents.
Collapse
Affiliation(s)
- Raphaël Boucher
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
2
|
Amen Y, Othman A, Sayed AM, El-Damasy AK, Mira A. Neuroprotective activities of coixol: in vitro and in silico studies. Nat Prod Res 2025:1-5. [PMID: 40286333 DOI: 10.1080/14786419.2025.2498076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
This study explored coixol, a natural compound from Coix lacryma-jobi, as a potential neuroprotective agent. Coixol's efficacy was assessed through in vitro assays, molecular docking, and molecular dynamics (MD) simulations, focusing on its effects on acetylcholinesterase (AChE) activity, oxidative stress, and Aβ1-42 protofibril interactions. Coixol inhibited AChE with an IC50 value of 3.63 ± 1.2 µM and stably interacted with its active site, mimicking tacrine, a known AChE inhibitor. It also protected SH-SY5Y cells against H2O2 and Aβ1-42-induced neurotoxicity in a dose-dependent manner. Gaussian accelerated MD (GaMD) simulations revealed two stable binding modes of coixol with Aβ1-42 protofibrils. One mode significantly disrupted the protofibril's structural integrity, explaining coixol's protective effects. These results highlight coixol's multi-target therapeutic potential in modulating AChE activity, reducing oxidative stress, and inhibiting Aβ aggregation, offering promising opportunities for neuroprotective drug development.
Collapse
Affiliation(s)
- Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed Othman
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, Basrah, Iraq
| | - Ashraf K El-Damasy
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amira Mira
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Luo H, Wei S, Fu S, Han L. Role of Achyranthes aspera in neurodegenerative diseases: current evidence and future directions. Front Pharmacol 2025; 16:1511011. [PMID: 40271071 PMCID: PMC12014640 DOI: 10.3389/fphar.2025.1511011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Neurodegenerative diseases are caused by the progressive degeneration of neurons and/or their myelin sheaths, ultimately leading to cognitive and motor dysfunction. Due to their complex pathogenesis and the limited efficacy of therapeutic drugs, these diseases have attracted significant attention. Achyranthes aspera, belongs to family Amaranthaceae, has been extensively used in the traditional and folk medicines for the treatment of various ailments. Modern research has revealed that Achyranthes aspera possesses various pharmacological effects, including cardiocerebrovascular protection, immune regulation, antioxidation, and anti-aging. Furthermore, the neuroprotective effects of Achyranthes aspera have been confirmed by numerous scientific studies. This review focuses on the primary pharmacological effects and mechanisms of Achyranthes aspera in the prevention and treatment of neurodegenerative diseases, as well as their potential application prospects. This review aims to provide insights into the potential clinical applications and research directions of Achyranthes aspera in neurodegenerative diseases.
Collapse
Affiliation(s)
- Huaiqing Luo
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, Changsha, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University Health Science Center, Changsha, Hunan, China
| | - Siwen Wei
- Department of Immunology, Jishou University School of Medicine, Jishou, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, Changsha, Hunan, China
- Institute of Interdisciplinary Studies, Hunan Normal University Health Science Center, Changsha, Hunan, China
| | - Li Han
- Hunan Provincial Key Laboratory of New Pharmaceutical Preparation, Changsha Medical University, Changsha, Hunan, China
| |
Collapse
|
4
|
Li K, Wang W. An Optimized and Sensitive UHPLC-ESI-Q-TOF/HRMS Demonstrated the Dynamic Profiling of Allantoin, N-trans-Feruloyl-3-Methoxytyramine, and N-p-Coumaroyltyramine from Portulaca oleracea L. In Vivo in Rats. J Sep Sci 2025; 48:e70055. [PMID: 39737608 DOI: 10.1002/jssc.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
This study revealed the dynamic profiling of three main components of Portulaca oleracea L. in vivo in rats, namely allantoin (A), N-trans-feruloyl-3-methoxytyramine (M), and N-p-coumaroyltyramine (C). A sensitive and efficient UHPLC-ESI-Q-TOF/HRMS, including an optimized separation process, was applied to their qualitative and quantitative analysis. The validation of the method presented the correlation coefficients, which were over 0.997. The mean matrix factors were 0.930. Recoveries ranged from 96.6% to 109.2%, and determination accuracy varied from 95% to 109.4%. The biological samples included rat plasma, liver, kidneys, bile, and excreta taken after a single oral administration of the saturated DMSO solution of P. oleracea extract. The contents of A, M, and C were of 2.5, 5.1, and 3.4 g/kg in the dry whole herb, respectively. A was identified in the liver and kidneys from 0 to 6 h. Allantoic acid, as one metabolite of A, was found to be kept in plasma for a short time, but another two successive metabolites of A remained over 6 h. It depicted a pharmacological material basis of the herb, regarded with A. The glucuronidation and/or sulfation of M and C were detected in rat bile from 0 to 12 h. The complicated but interesting metabolic schemes for A, M, and C were illustrated from their HRMS and MS/MS performance.
Collapse
Affiliation(s)
- Kexian Li
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Medicines, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Wei Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Medicines, Kunming Medical University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
5
|
Badawy AM, Eltamany EE, Hussien RM, Mohamed OG, El-Ayouty MM, Nafie MS, Tripathi A, Ahmed SA. Cornulacin: a new isoflavone from Cornulaca monacantha and its isolation, structure elucidation and cytotoxicity through EGFR-mediated apoptosis. RSC Med Chem 2024:d4md00524d. [PMID: 39185453 PMCID: PMC11342161 DOI: 10.1039/d4md00524d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024] Open
Abstract
Chemical investigation of the methanolic extract of Cornulaca monacantha (Amaranthaceae), an annual wild herb collected from North Sinai, Egypt, yielded a new isoflavone cornulacin 1 and five known compounds: N-trans-feruloyltyramine 2, N-trans-feruloyl-3'-methoxytyramine 3, N-trans-caffeoyl tyramine 4, Cannabisin F 5 and (2aS, 3aS) lyciumamide D 6. Using MTT assay, the isolated compounds were evaluated for their in vitro cytotoxicity against pancreatic (Panc1) and ovarian (A2780) cancer cell lines. Compounds 1, 2, 3, and 4 exhibited promising cytotoxic activity against the tested cells, among which compound 1 (IC50 of 2.1 ± 0.21 μM) was the most active one against A2780 cells, whereas compound 2 (IC50 of 3.4 ± 0.11 μM) was the most effective compound against Panc1 cells. Accordingly, compound 1 was further investigated for its apoptotic induction in A2780 cancer cells using Annexin V/PI staining. Compound 1 significantly stimulated apoptotic ovarian A2780 cancer cells by 45.9-fold and arrested cell proliferation in the S-phase. Such activity was mediated through the upregulation of proapoptotic genes Bax; P53; and caspase 3, 8, and 9 besides the downregulation of the Bcl-2 gene, the anti-apoptotic one. Furthermore, molecular docking investigation demonstrated the strong binding affinity of compound 1 with EGFR active sites, which validated its experimental EGFR enzyme inhibition activity.
Collapse
Affiliation(s)
- Ahmed M Badawy
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch Arish 45511 Egypt
| | - Enas E Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Rodina M Hussien
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch Arish 45511 Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University Kasr el Aini St. Cairo 11562 Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Mayada M El-Ayouty
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University - Arish Branch Arish 45511 Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P. O. Box 27272 Sharjah United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan Ann Arbor MI 48109 USA
| | - Safwat A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|
6
|
Anjum F, Touqeer S, Khan MY, Jamil Q, Rida A, Shirazi JH, Ejaz SA, Attaullah HM, Sarwar G, Khan ZH, Wazir MA, Malik B, Aufy M, Iqbal SM. Pharmacognostic Evaluation, Chemical Characterization, and Antibacterial Activity of Bassia indica (Wight) A.J. Scott. PLANTS (BASEL, SWITZERLAND) 2024; 13:1753. [PMID: 38999593 PMCID: PMC11244141 DOI: 10.3390/plants13131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Bassia indica (Wight) A.J. Scott is an Indian origin plant with documented medicinal and nutritional value, but has not been fully characterized yet. The present study was designed to establish pharmacognostic standards for the proper identification of the B. indica plant and its chemical characterization. The plant was standardized with World Health Organization (WHO) standardization tools and chemically characterized by Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analysis. Antibacterial potential was assessed by the zone of inhibition and minimum inhibitory concentration (MIC), and molecular docking studies were also performed. Pharmacognostic evaluation established the macroscopic and microscopic parameters for the identification of whole plant and its powder. Physicochemical parameters were also set forth while quantitative phytochemical analysis showed that the ethyl acetate fraction had the highest quantity of phenols, flavonoids, and tannins. FTIR analysis showed several functional groups such as phenols, alkanes, and alcohols while 55 phytochemicals were identified in the GC-MS analysis of the crude fraction. The crude extract and other fractions showed marked antibacterial activity, while the ethyl acetate fraction showed the least MIC (1.95-31.25 mg/mL). Phytochemicals identified in the GC-MS showed good molecular docking interactions against the DNA gyrase subunit B of bacteria with binding energies ranging from -4.2 to -9.4 kcal/mol. The current study describes the pharmacognostic characterization and phytochemical profiling of B. indica and provides scientific evidence to support its use in infections.
Collapse
Affiliation(s)
- Fayyaz Anjum
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (F.A.)
| | - Saad Touqeer
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Muhammad Younus Khan
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - QurratUlAin Jamil
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ayesha Rida
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (F.A.)
| | - Jafir Hussain Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ghulam Sarwar
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zaeem Hayat Khan
- Department of Pharmacy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Asif Wazir
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Barizah Malik
- School of Biochemistry and Biotechnology, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, University of Vienna, UZA II, Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
| | - Shahid Muhammad Iqbal
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (F.A.)
| |
Collapse
|
7
|
Xu JJ, Yin YP, Wei W, Tan QG. Aporphine and amide alkaloids from Illigera parviflora. Fitoterapia 2024; 172:105737. [PMID: 37939737 DOI: 10.1016/j.fitote.2023.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Three undescribed alkaloids (+)-9-hydroxy-N-acetylnordicentrine (1), illigeparvinine (2), and deca-(2E,4Z)-2,4-dienoic acid 4-hydroxy-2-phenethyl amide (3), along with 19 known analogues (4-22), were isolated from the ethnic medicinal plant Illigera parviflora. Their structures were established using NMR, MS, and other spectroscopic analyses as well as X-ray diffraction. Moderate inhibition of human gastric carcinoma (MGC-803) and breast adenocarcinoma (T-47D) cell lines proliferation was observed for actinodaphnine (4) with IC50 values of 28.74 and 11.65 μM, respectively. These findings contribute new anticancer potential compounds and expand the chemical diversity known from the valuable traditional medicinal plant I. parviflora.
Collapse
Affiliation(s)
- Juan-Juan Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, PR China
| | - Yue-Ping Yin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, PR China
| | - Wei Wei
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, PR China
| | - Qin-Gang Tan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650302, PR China; Guangxi Key Laboratory of Drug Discovery and Optimization, Guilin Medical University, Guilin 541199, PR China.
| |
Collapse
|
8
|
El-Gendy ZA, Taher RF, Elgamal AM, Serag A, Hassan A, Jaleel GAA, Farag MA, Elshamy AI. Metabolites Profiling and Bioassays Reveal Bassia indica Ethanol Extract Protective Effect against Stomach Ulcers Development via HMGB1/TLR-4/NF-κB Pathway. Antioxidants (Basel) 2023; 12:1263. [PMID: 37371993 DOI: 10.3390/antiox12061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical manifestation of gastric ulcers is frequent, in addition to their costly drug regimens, warranting the development of novel drugs at lower costs. Although Bassia indica is well characterized for its anti-inflammatory and antioxidant potential, capacity of its ethanol extract (BIEE) to prevent stomach ulcers' progression has not been reported. A nuclear protein termed high-mobility group box 1 (HMGB1) plays a key role in the formation of stomach ulcers by triggering a number of inflammatory responses. The main purpose of the current investigation was to evaluate the in vivo anti-inflammatory and anti-ulcerogenic capabilities of BIEE against ethanol-induced gastric ulcers in rats via the HMGB1/TLR-4/NF-B signaling pathway. HMGB1 and Nuclear factor kappa (NF-B) expression, IL-1β and Nrf2 contents showed an increase along with ulcer development, concurrent with an increase in immunohistochemical TLR-4 level. In contrast, pre-treatment with BIEE significantly reduced HMGB1 and Nuclear factor kappa (NF-B) expression levels, IL-1β and Nrf2 contents and ulcer index value. Such protective action was further confirmed based on histological and immunohistochemical TLR-4 assays. Untargeted analysis via UPLC-ESI-Qtof-MS has allowed for the comprehensive characterization of 40 metabolites in BIEE mostly belonged to two main chemical classes, viz., flavonoids and lipids. These key metabolites, particularly flavonoids, suggesting a mediation for the anti-inflammatory and anti-ulcerogenic properties of BIEE, pose it as a promising natural drug regimen for treatment of stomach ulcers.
Collapse
Affiliation(s)
- Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Rehab F Taher
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Abdelbaset M Elgamal
- Department of Chemistry of Microbial and Natural Products, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Gehad A Abdel Jaleel
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Center, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Mohammed MMD, Heikal EA, Ellessy FM, Aboushousha T, Ghareeb MA. Comprehensive chemical profiling of Bassia indica Wight. aerial parts extract using UPLC-ESI-MS/MS, and its antiparasitic activity in Trichinella spiralis infected mice: in silico supported in vivo study. BMC Complement Med Ther 2023; 23:161. [PMID: 37202749 DOI: 10.1186/s12906-023-03988-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Trichinellosis is a public health threat infected both animals and humans as a result of eating undercooked meat. It caused by Trichinella spiralis that has widespread drug resistance and even developed many sophisticated strategies for their survival, this increases the demand in searching for new anthelmintic drugs from natural source. METHODS Our objectives were to test the in vitro and in vivo anthelmintic activity of Bassia indica BuOH frac., and to characterize its chemical composition using UPLC-ESI-MS/MS. Besides an in silico molecular docking study with the prediction of the PreADMET properties. RESULTS In vitro investigation of B. indica BuOH frac., showed severe destruction of the adult worm and larvae, marked cuticle swelling, areas with vesicles, blebs and loss of annulations. This was assured via in vivo study, which revealed a significant reduction (P < 0.05) in the mean adult worm count with efficacy of 47.8% along with a significant decrease (P < 0.001) in the mean larval count per gram muscle with efficacy 80.7%. Histopathological examinations of the small intestine and muscular sections showed marked improvement. In addition, immunohistochemical findings demonstrated that B. indica BuOH frac. depressed the proinflammatory cytokines expressions of TNF-α, which was obviously upregulated by T. spiralis. Precise chemical investigation of the BuOH frac. using UPLC-ESI-MS/MS resulted in the identification of 13 oleanolic type triterpenoid saponins; oleanolic acid 3-O-6´-O-methyl-β-D-glucurono-pyranoside (1), chikusetsusaponin-IVa (2) and its methyl ester (3), chikusetsusaponin IV (4) and its methyl ester (5), momordin-Ic (6) and its methyl ester (7), betavulgaroside-I (8), -II (9) -IV (10), -X (11), licorice-saponin-C2 (12) and -J2 (13). In addition, 6 more phenolics were identified as syringaresinol (14), 3,4-di-O-caffeoylquinic acid (15), 3-O-caffeoyl-4-O-dihydrocaffeoylquinic acid (16), 3,4-di-O-caffeoylquinic acid butyl ester (17), 3,5-di-O-galloyl-4-O-digalloylquinic acid (18) and quercetin 3-O-(6´´-feruloyl)-sophoroside (19). The auspicious anthelmintic activity was further ascertained using in silico molecular docking approach that targeted certain protein receptors (β-tubulin monomer, tumor necrosis factor alpha (TNF-α), cysteine protease (Ts-CF1), calreticulin protein (Ts-CRT)), all the docked compounds (1-19) fit into the binding site of the active pocket with binding affinities noteworthy than albendazole. In addition, ADMET properties, drug score and drug likeness were predicted for all compounds.
Collapse
Affiliation(s)
- Magdy M D Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki-12622, Cairo, Egypt.
| | - Elham A Heikal
- Department of Medical Parasitology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fatma M Ellessy
- Department of Medical Parasitology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Tarek Aboushousha
- Department of Pathology, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, (P.O. 30), Giza, 12411, Egypt
| | - Mosad A Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute, Kornaish El-Nile, Warrak El-Hadar, Imbaba, (P.O. 30), Giza, 12411, Egypt
| |
Collapse
|
10
|
Amin E, Abdel-Bakky MS, Mohammed HA, Hassan MHA. Chemical Profiling and Molecular Docking Study of Agathophora alopecuroides. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111852. [PMID: 36430987 PMCID: PMC9696702 DOI: 10.3390/life12111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Natural products continue to provide inspiring chemical moieties that represent a key stone in the drug discovery process. As per our previous research, the halophyte Agathophora alopecuroides was noted as a potential antidiabetic plant. However, the chemical profiling and highlighting the metabolite(s) responsible for the observed antidiabetic activity still need to be investigated. Accordingly, the present study presents the chemical profiling of this species using the LC-HRMS/MS technique followed by a study of the ligand-protein interaction using the molecular docking method. LC-HRMS/MS results detected twenty-seven compounds in A. alopecuroides extract (AAE) belonging to variable chemical classes. Among the detected compounds, alkaloids, flavonoids, lignans, and iridoids were the most prevailing. In order to highlight the bioactive compounds in AAE, the molecular docking technique was adopted. Results suggested that the two alkaloids (Eburnamonine and Isochondrodendrine) as well as the four flavonoids (Narirutin, Pelargonidin 3-O-rutinoside, Sophora isoflavanone A, and Dracorubin) were responsible for the observed antidiabetic activity. It is worth mentioning that this is the first report for the metabolomic profiling of A. alopecuroides as well as the antidiabetic potential of Isochondrodendrine, Sophora isoflavanone A, and Dracorubin that could be a promising target for an antidiabetic drug.
Collapse
Affiliation(s)
- Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Marwa H. A. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: or ; Tel.: +2-012-7898-2288; Fax: +2-(082)-2317958
| |
Collapse
|