1
|
Gawande V, Kushwaha R, Mandal AA, Banerjee S. Targeting SARS-CoV-2 Proteins: In Silico Investigation with Polypyridyl-Based Zn(II)-Curcumin Complexes. Chembiochem 2024; 25:e202400612. [PMID: 39264259 DOI: 10.1002/cbic.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/13/2024]
Abstract
Herein, we have selected eight Zn(II)-based complexes viz., [Zn(bpy)(acac)Cl] (1), [Zn(phen)(acac)Cl] (2), [Zn(dppz)(acac)Cl] (3), [Zn(dppn)(acac)Cl] (4), [Zn(bpy)(cur)Cl] (5), [Zn(phen)(cur)Cl] (6), [Zn(dppz)(cur)Cl] (7), [Zn(dppn)(cur)Cl] (8), where bpy=2,2'-bipyridine, phen=1,10-phenanthroline, dppz=benzo[i]dipyrido[3,2-a:2',3'-c]phenazine, dppn=naphtho[2,3-i]dipyrido[3,2-a:2',3'-c]phenazine, acac=acetylacetonate, cur=curcumin and performed in silico molecular docking studies with the viral proteins, i. e., spike protein (S), Angiotensin-converting enzyme II Receptor protein (ACE2), nucleocapsid protein (N), main protease protein (Mpro), and RNA-dependent RNA polymerase protein (RdRp) of SARS-CoV-2. The binding energy calculations, visualization of the docking orientation, and analysis of the interactions revealed that these complexes could be potential inhibitors of the viral proteins. Among complexes 1-8, complex 6 showed the strongest binding affinity with S and ACE2 proteins. 4 exerted better binding affinity in the case of the N protein, whereas 8 presented the highest binding affinities with Mpro and RdRp among all the complexes. Overall, the study indicated that Zn(II) complexes have the potential as alternative and viable therapeutic solutions for COVID-19.
Collapse
Affiliation(s)
- Vedant Gawande
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
2
|
Morsy ARI, Mahmoud SH, Abou Shama NM, Arafa W, Yousef GA, Khalil AA, Ramadan SK. Antiviral activity of pyrazole derivatives bearing a hydroxyquinoline scaffold against SARS-CoV-2, HCoV-229E, MERS-CoV, and IBV propagation. RSC Adv 2024; 14:27935-27947. [PMID: 39224644 PMCID: PMC11367708 DOI: 10.1039/d4ra04728a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The ongoing global threat posed by coronaviruses necessitates the urgent development of effective antiviral agents. In this study, we investigated the potential of hydroxyquinoline-pyrazole candidates as antiviral agents against a range of coronaviruses, including SARS-CoV-2, MERS-CoV, and HCoV-229E. Molecular docking studies were conducted to assess the binding affinity of the synthesized compounds to key viral proteins. The compounds were prepared via condensation reactions of a pyrazolylhydrazide derivative with 2-chloro-3-formylquinoline, yielding hydrazone and pyrrolone derivatives. The cytotoxicity of compounds was evaluated using Vero E6 cells, and their antiviral activity was assessed via plaque reduction assays and viral inhibition assays using hydroxychloroquine as a positive control antiviral drug. The results revealed promising antiviral activity of the synthesized compounds against all tested coronaviruses, with selectivity indices indicating their potential as selective antiviral agents. Notably, the compounds exhibited potent inhibition of SARS-CoV-2 at lower concentrations, highlighting their promise as therapeutic candidates against this highly pathogenic virus. Likewise, the modeling pharmacokinetics approach showed its appropriate drug-likeness and bioavailability assets. These findings underscore the importance of hydroxyquinoline-pyrazole derivatives as potential antiviral agents against diverse coronaviruses, providing valuable insights for further therapeutic development.
Collapse
Affiliation(s)
- Alaa R I Morsy
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center Cairo Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Egypt
| | - Noura M Abou Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Egypt
| | - Walaa Arafa
- Microbiology Department, Faculty of Agriculture, Cairo University Egypt
| | - Gehad A Yousef
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center Cairo Egypt
| | - Ahmed A Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agricultural Research Center (ARC) Cairo Egypt
| | - Sayed K Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
3
|
Conboy A, Goodfellow AS, Kasten K, Dunne J, Cordes DB, Bühl M, Smith AD. De-epimerizing DyKAT of β-lactones generated by isothiourea-catalysed enantioselective [2 + 2] cycloaddition. Chem Sci 2024; 15:8896-8904. [PMID: 38873072 PMCID: PMC11168096 DOI: 10.1039/d4sc01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 06/15/2024] Open
Abstract
An enantioselective isothiourea-catalysed [2 + 2] cycloaddition of C(1)-ammonium enolates with pyrazol-4,5-diones is used to construct spirocyclic β-lactones in good yields, excellent enantioselectivity (99 : 1 er) but with modest diastereocontrol (typically 70 : 30 dr). Upon ring-opening with morpholine or alternative nucleophilic amines and alcohols β-hydroxyamide and β-hydroxyester products are generated with enhanced diastereocontrol (up to >95 : 5 dr). Control experiments show that stereoconvergence is observed in the ring-opening of diastereoisomeric β-lactones, leading to a single product (>95 : 5 dr, >99 : 1 er). Mechanistic studies and DFT analysis indicate a substrate controlled Dynamic Kinetic Asymmetric Transformation (DyKAT) involving epimerisation at C(3) of the β-lactone under the reaction conditions, coupled with a hydrogen bond-assisted nucleophilic addition to the Si-face of the β-lactone and stereodetermining ring-opening. The scope and limitations of a one-pot protocol consisting of isothiourea-catalysed enantio-determining [2 + 2] cycloaddition followed by diastereo-determining ring-opening are subsequently developed. Variation within the anhydride ammonium enolate precursor, as well as N(1) and C(3) within the pyrazol-4,5-dione scaffold is demonstrated, giving a range of functionalised β-hydroxyamides with high diastereo- and enantiocontrol (>20 examples, up to >95 : 5 dr and >99 : 1 er) via this DyKAT.
Collapse
Affiliation(s)
- Aífe Conboy
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Joanne Dunne
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - David B Cordes
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews St Andrews Fife KY16 9ST UK
| |
Collapse
|
4
|
Kachi OG, Pawar HR, Chabukswar AR, Jagdale S, Swamy V, Vinayak K, Hingane D, Shinde M, Pawar N. Design, Synthesis and Evaluation of Antifungal Activity of Pyrazoleacetamide Derivatives. Med Chem 2024; 20:957-968. [PMID: 38867538 DOI: 10.2174/0115734064300961240417063246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Fungal infections have posed a big challenge in the management of their treatment. Due to the resistance and toxicity of existing drug molecules in the light of pandemic infections, like COVID-19, there is an urgent need to find newer derivatives of active molecules, which can be effective in fungal infections. OBJECTIVE In the present study, we aimed to design pyrazole derivatives using molecular modeling studies against target 1EA1 and synthesize 10 molecules of pyrazole derivatives using a multi-step synthesis approach. METHODS Designed pyrazole derivatives were synthesized by conventional organic methods. The newly synthesized pyrazole molecules were characterized by using FT-IR, 1HNMR, 13CNMR, and LC-MS techniques. Molecular docking studies were also performed. The antifungal activity of newly synthesized compounds was assessed in vitro against Candida albicans and Aspergillus niger using the well plate method. RESULTS Two of the compounds, OK-7 and OK-8, have been found to show significant docking interaction with target protein 1EA1. These two compounds have also been found to show significant anti-fungal activity against Candida albicans and Aspergillus nigra when compared to the standard fluconazole. The Minimum Inhibitory Concentration (MIC) value of these two compounds has been found to be 50 μg/ml. CONCLUSION Pyrazole derivatives with -CH3, CH3O-, and -CN groups have been found to be active against tested fungi and can be further explored for their potential as promising anti-fungal agents for applications in the field of medicinal chemistry.
Collapse
Affiliation(s)
- Onkar G Kachi
- Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune, 411 004, India
| | - Hari R Pawar
- Department of Chemistry, MES Abasaheb Garware College, Karve Road, Pune, 411 004, India
| | - Anuruddha R Chabukswar
- Department Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, MS, India
| | - Swati Jagdale
- Department Pharmaceutical Sciences, School of Health Sciences & Technology, Dr. Vishwanath Karad MIT World Peace University, Kothrud, Pune, 411038, MS, India
| | | | - Kadam Vinayak
- Department of Chemistry, MGVS Arts Commerce & Science College, Surgana, Nashik, 422211, India
| | - Dattatray Hingane
- Department of Chemistry, Mahatma Phule College, Pimpri, Pune, 411017, India
| | - Mahadev Shinde
- Department of Chemistry, Arts, Science and Commerce College, Indapur, Maharashtra 413106, India
| | - Nagesh Pawar
- Department of Chemistry, B.K. Birla College, Kalyan. Kalyan West, Maharashtra, 421301, India
| |
Collapse
|
5
|
Kuang J, Liu M, Yu Q, Cheng Y, Huang J, Han S, Shi J, Huang L, Li P. Antiviral Effect and Mechanism of Edaravone against Grouper Iridovirus Infection. Viruses 2023; 15:2237. [PMID: 38005914 PMCID: PMC10674758 DOI: 10.3390/v15112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Singapore grouper iridovirus (SGIV) is a virus with high fatality rate in the grouper culture industry. The outbreak of SGIV is often accompanied by a large number of grouper deaths, which has a great impact on the economy. Therefore, it is of great significance to find effective drugs against SGIV. It has been reported that edaravone is a broad-spectrum antiviral drug, most widely used clinically in recent years, but no report has been found exploring the effect of edaravone on SGIV infections. In this study, we evaluated the antiviral effect of edaravone against SGIV, and the anti-SGIV mechanism of edaravone was also explored. It was found that the safe concentration of edaravone on grouper spleen (GS) cells was 50 µg/mL, and it possessed antiviral activity against SGIV infection in a dose-dependent manner. Furthermore, edaravone could significantly disrupt SGIV particles and interference with SGIV binding to host cells, as well as SGIV replication in host cells. However, edaravone was not effective during the SGIV invasion into host cells. This study was the first time that it was determined that edaravone could exert antiviral effects in response to SGIV infection by directly interfering with the processes of SGIV infecting cells, aiming to provide a theoretical basis for the control of grouper virus disease.
Collapse
Affiliation(s)
- Jihui Kuang
- School of Resources, Environment and Materials, Guangxi University, Nanning 537100, China;
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Marine Sciences, Nanning 530022, China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Marine Sciences, Nanning 530022, China
| | - Yuan Cheng
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Marine Sciences, Nanning 530022, China
| | - Jing Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Marine Sciences, Nanning 530022, China
| | - Shuyu Han
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- Guangxi Fisheries Technology Extension Station, Nanning 530022, China
| | - Jingu Shi
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- Guangxi Fisheries Technology Extension Station, Nanning 530022, China
| | - Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Marine Sciences, Nanning 530022, China
| | - Pengfei Li
- School of Resources, Environment and Materials, Guangxi University, Nanning 537100, China;
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530022, China; (M.L.); (Q.Y.); (Y.C.); (J.H.); (S.H.); (J.S.)
- China-ASEAN Modern Fishery Industry Technology Transfer Demonstration Center, Beibu Gulf Marine Industrial Research Institute, Guangxi Academy of Marine Sciences, Nanning 530022, China
| |
Collapse
|
6
|
Branković J, Milovanović VM, Petrović ZD, Simijonović D, Petrović VP. Pyrazolone-type compounds (part II): in vitro and in silico evaluation of antioxidant potential; structure-activity relationship. RSC Adv 2023; 13:2884-2895. [PMID: 36756409 PMCID: PMC9846718 DOI: 10.1039/d2ra08280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The pyrazolone class comprises a variety of hybrid compounds displaying diverse biological actions. Although studied for decades, these compounds are still of interest due to their facile chemical transformations. In our previous work, we presented the synthetic route of functionalised pyrazolone derivatives. The presence of pyrazolone structural motif in many drugs, such as edaravone, prompted us to investigate the antioxidant features of the selected compounds. In this paper, we provide an extensive in vitro and in silico description of the antioxidant properties of selected pyrazolone analogues. The obtained in vitro results revealed their great antiradical potency against the DPPH radical (IC50 values in the 2.6-7.8 μM range), where the best results were obtained for analogues bearing a catechol moiety. Density functional theory (DFT) was used to assess their antioxidant capacity from the thermodynamic aspect. Here, good agreement with in vitro results was achieved. DFT was employed for the prediction of the most preferable radical scavenging pathway, also. In polar solvents, the SPLET mechanism is a favourable scavenging route, whereas in nonpolar solvents the HAT is slightly predominant. Furthermore, antioxidant mechanisms were studied in the presence of relevant reactive oxygen species. The obtained values of the reaction enthalpies with the selected radicals revealed that HAT is slightly prevailing in polar solvents, while the SPLET mechanism is dominant in nonpolar solvents. Regarding the well-known antioxidant features of the drug edaravone, these findings represent valuable data for this pyrazolone class and could be used as the basis for further investigations.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Vesna M Milovanović
- University of Kragujevac, Faculty of Agronomy, Department of Chemistry and Chemical Engineering Cara Dušana 34 32000 Čačak Serbia
| | - Zorica D Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Vladimir P Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
7
|
Gupta A, Iqbal S, Roohi, Hussain MK, Zaheer MR, Shankar K. Visible Light-Promoted Green and Sustainable Approach for One-Pot Synthesis of 4,4'-(Arylmethylene)bis(1H-pyrazol-5-ols), In Vitro Anticancer Activity, and Molecular Docking with Covid-19 M pro. ACS OMEGA 2022; 7:34583-34598. [PMID: 36188265 PMCID: PMC9520760 DOI: 10.1021/acsomega.2c04506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 08/25/2023]
Abstract
A visible light-promoted, efficient, green, and sustainable strategy has been adopted to unlatch a new pathway toward the synthesis of a library of medicinally important 4,4'-(arylmethylene)bis(1H-pyrazol-5-ols) moieties using substituted aromatic aldehydes and sterically hindered 3-methyl-1-phenyl-2-pyrazoline-5-one in excellent yield. This reaction shows high functional group tolerance and provides a cost-effective and catalyst-free protocol for the quick synthesis of biologically active compounds from readily available substrates. Synthesized compounds were characterized by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and single-crystal XRD analysis. All the synthesized compounds were evaluated for their antiproliferative activities against a panel of five different human cancer cell lines and compared with Tamoxifen using MTT assay. Compound 3m exhibited maximum antiproliferative activity and was found to be more active as compared to Tamoxifen against both the MCF-7 and MDA-MB-231 cell lines with an IC50 of 5.45 and 9.47 μM, respectively. A molecular docking study with respect to COVID-19 main protease (Mpro) (PDB ID: 6LU7) has also been carried out which shows comparatively high binding affinity of compounds 3f and 3g (-8.3 and -8.8 Kcal/mole, respectively) than few reported drugs such as ritonavir, remdesivir, ribacvirin, favipiravir, hydroxychloroquine, chloroquine, and olsaltamivir. Hence, it reveals the possibility of these compounds to be used as effective COVID-19 inhibitors.
Collapse
Affiliation(s)
- Anamika Gupta
- Department
of Chemistry, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Safia Iqbal
- Department
of Chemistry, Aligarh Muslim University, Aligarh202002, Uttar Pradesh, India
| | - Roohi
- Protein
Research Laboratory, Department of Bioengineering, Integral University, Lucknow226026, Uttar Pradesh, India
| | - Mohd. Kamil Hussain
- Department
of Chemistry, Govt. Raza PG College, Rampur24901, Uttar Pradesh, India
| | - Mohd. Rehan Zaheer
- Department
of Chemistry, R.M.P.S.P. Girls Post Graduate
College, Basti272301, Uttar Pradesh, India
| | - Krapa Shankar
- Sun
Pharmaceutical industries Ltd, Sarhaul, Sector 18, Gurgaon, Haryana122015, India
| |
Collapse
|