1
|
Fu X, Lei T, Chen C, Fu G. Construction and study of blood purification membrane modified with PDE inhibitor: Investigation of antiplatelet activity and hemocompatibility. Colloids Surf B Biointerfaces 2024; 234:113725. [PMID: 38157764 DOI: 10.1016/j.colsurfb.2023.113725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The recent "cell-based theory" of coagulation suggests that platelets serve as the site of coagulation factor reactions, making platelets an effective target for inhibiting membrane thrombosis. Unfortunately, there is limited research on how blood purification membranes affect platelet intracellular signaling. In this study, we modified polyethersulfone (PES) membranes with the platelet phosphodiesterase (PDE) inhibitor dipyridamole (DIP) and investigated the effects of the DIP/PES (DP) membranes on platelet adhesion, activation, aggregation, and secretion, as well as the role of the PDE-cyclic adenosine monophosphate (cAMP) intracellular signaling pathway. Additionally, we evaluated the hemocompatibility and preliminary in vivo safety of DP membranes. Our results demonstrate that the modified DP membranes effectively inhibited platelet adhesion, membrane CD62P expression, and plasma soluble P-selectin activation levels. Furthermore, we confirmed that DP membranes achieved platelet aggregation inhibition and reduced platelet factor 4 and β-thromoglobulin secretion levels by inhibiting platelet intracellular PDE-cAMP signaling. Moreover, the modified DP membranes exhibited good anticoagulant and red blood cell membrane stability and complement resistance and demonstrated preliminary biocompatibility in mouse experiments. Collectively, these findings highlight the potential application of DP dialysis membranes in blood purification for critically ill patients.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| | - Ting Lei
- Powder Metallurgy Institute of Central South University, China
| | - Cong Chen
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China.
| | - Gan Fu
- Department of Hematology, National Hemophilia Comprehensive Care Center, Xiangya Hospital, Central South University, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China
| |
Collapse
|
2
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
3
|
Al-Senani GM, Nasr M, Zayed M, Ali SS, Alshaikh H, Abd El-Salam HM, Shaban M. Fabrication of PES Modified by TiO 2/Na 2Ti 3O 7 Nanocomposite Mixed-Matrix Woven Membrane for Enhanced Performance of Forward Osmosis: Influence of Membrane Orientation and Feed Solutions. MEMBRANES 2023; 13:654. [PMID: 37505020 PMCID: PMC10383846 DOI: 10.3390/membranes13070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Water treatment is regarded as one of the essential elements of sustainability. To lower the cost of treatment, the wastewater volume is reduced via the osmotic process. Here, mixed-matrix woven forward osmosis (MMWFO) PES membranes modified by a TiO2/Na2Ti3O7 (TNT) nanocomposite were fabricated for treating water from different sources. Various techniques were used to characterize the TNT nanocomposite. The crystal structure of TNT is a mix of monoclinic Na2Ti3O7 and anorthic TiO2 with a preferred orientation of (2-11). The SEM image shows that the surface morphology of the TNT nanocomposite is a forked nano-fur with varying sizes regularly distributed throughout the sample. The impact of TNT wt.% on membrane surface morphologies, functional groups, hydrophilicity, and performance was investigated. Additionally, using distilled water (DW) as the feed solution (FS), the effects of various NaCl concentrations, draw solutions, and membrane orientations on the performance of the mixed-matrix membranes were tested. Different water samples obtained from various sources were treated as the FS using the optimized PES/TNT (0.01 wt.%) MMWFO membrane. Using textile effluent as the FS, the impact of various NaCl DS concentrations on the permeated water volume was investigated. The results show that the MMWFO membrane generated with the TNT nanocomposite at a 0.01 wt.% ratio performed better in FO mode. After 30 min of use with 1 M NaCl and various sources of water as the FS, the optimized MMWFO membrane provided a steady water flow and exhibited antifouling behavior. DW performed better than other water types whenever it was used owing to its greater flow (136 LMH) and volume reduction (52%). Tap water (TW), textile industrial wastewater (TIWW), gray water (GW), and municipal wastewater (MW) showed volume reductions of 41%, 34%, 33%, and 31.9%, respectively. Additionally, when utilizing NaCl as the DS and TIWW as the FS, 1 M NaCl resulted in more permeated water than 0.25 M and 0.5 M, yet a higher volume reduction of 41% was obtained.
Collapse
Affiliation(s)
- Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mervat Nasr
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Zayed
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sahar S Ali
- Chemical Engineering and Pilot-Plant Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Hind Alshaikh
- Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, P.O. Box 344, Jeddah 21911, Saudi Arabia
| | - Hanafy M Abd El-Salam
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| |
Collapse
|
4
|
Al-Senani GM, Zayed M, Nasr M, Ali SS, Shaban M, Mohamed F. Flexible Electrode Based on PES/GO Mixed Matrix Woven Membrane for Efficient Photoelectrochemical Water Splitting Application. MEMBRANES 2023; 13:653. [PMID: 37505019 PMCID: PMC10384634 DOI: 10.3390/membranes13070653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
We introduced, for the first time, a membrane composed of nanostructured self-polyether sulphone (PES) filled with graphene oxide (GO) applied to photoelectrochemical (PEC) water splitting. This membrane was fabricated through the phase inversion method. A variety of characteristics analysis of GO and its composite with PES including FTIR, XRD, SEM, and optical properties was studied. Its morphology was completely modified from macro voids for bare PES into uniform layers with a random distribution of GO structure which facilitated the movement of electrons between these layers for hydrogen production. The composite membrane photocathode brought a distinct photocurrent generation (5.7 mA/cm2 at 1.6 V vs. RHE). The optimized GO ratio in the membrane was investigated to be PG2 (0.008 wt.% GO). The conversion efficiencies of PEC were assessed for this membrane. Its incident photon-to-current efficiency (IPCE) was calculated to be 14.4% at λ = 390 nm beside the applied bias photon-to-current conversion efficiency (ABPE) that was estimated to be 7.1% at -0.4 V vs. RHE. The stability of the PG2 membrane after six cycles was attributed to high thermal and mechanical stability and excellent ionic conductivity. The number of hydrogen moles was calculated quantitively to be 0.7 mmol h-1 cm-2. Finally, we designed an effective cost membrane with high performance for hydrogen generation.
Collapse
Affiliation(s)
- Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Zayed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mervat Nasr
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sahar S Ali
- Chemical Engineering and Pilot-Plant Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Physics, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia
| | - Fatma Mohamed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Materials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|