1
|
Choi J, Thirupathi A, Kim J, Ha HJ, Ahn KH, Kang EJ. Fe(II)-Iminopyridine Catalyst for the Regioselective Synthesis of Oxazolidinones Using Carbon Dioxide. J Org Chem 2024; 89:18081-18089. [PMID: 39630108 DOI: 10.1021/acs.joc.4c01907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study presents the application of a novel Fe-iminopyridine catalyst for the regioselective synthesis of oxazolidinones from carbon dioxide and aziridines. Our findings demonstrate that the Fe-iminopyridine catalyst containing imidazole functional group offers promising efficiency and facilitates a sustainable approach to green chemical synthesis at 50 °C and 10 bar CO2 pressure in a single-component Fe catalyst system. Various aziridines with carboxylic acid-derived substituents were transformed into 5-carbonyl substituted oxazolidinone products. The regioselective synthesis of oxazolidinones followed by the reduction enhances their utility for the pharmaceutically valuable compounds.
Collapse
Affiliation(s)
- Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Annaram Thirupathi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihoon Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyun-Joon Ha
- Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
2
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Xu CK, Yang GW, Lu C, Wu GP. A Binary Silicon-Centered Organoboron Catalyst with Superior Performance to That of Its Bifunctional Analogue. Angew Chem Int Ed Engl 2023; 62:e202312376. [PMID: 37847123 DOI: 10.1002/anie.202312376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
This work reported that a silicon-centered alkyl borane/ammonium salt binary (two-component) catalyst exhibits much higher activity than its bifunctional analogue (one-component) for the ring-opening polymerization of propylene oxide, showing 7.3 times the activity of its bifunctional analogue at a low catalyst loading of 0.01 mol %, and even 15.3 times the activity at an extremely low loading of 0.002 mol %. By using 19 F NMR spectroscopy, control experiments, and theoretical calculation we discovered that the central silicon atom displays appropriate electron density and a larger intramolecular cavity, which is useful to co-activate the monomer and to deliver propagating chains, thus leading to a better intramolecular synergic effect than its bifunctional analogue. A unique two-pathway initiation mode was proposed to explain the unusual high activity of the binary catalytic system. This study breaks the traditional impression of the binary Lewis acid/nucleophilic catalyst with poor activity because of the increase in entropy.
Collapse
Affiliation(s)
- Cheng-Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Guan-Wen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Chenjie Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guang-Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
4
|
Luo Y, Chen F, Zhang H, Liu J, Liu N. Catalysis Conversion of Carbon Dioxide and Epoxides by Tetrahydroxydiboron To Prepare Cyclic Carbonates. J Org Chem 2023; 88:15717-15725. [PMID: 37885137 DOI: 10.1021/acs.joc.3c01702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A binary catalytic system comprising tetrahydroxydiboron and tetrabutylammonium iodide (TBAI) was used to catalyze the cycloaddition of carbon dioxide (CO2) with epoxides. The tetrahydroxydiboron catalyst (9 mol %), in combination with the use of TBAI (13.5 mol %) as a nucleophile, is capable of catalyzing the cycloaddition of CO2 with various terminal epoxides under room temperature and a CO2 balloon. In addition, a range of internal epoxides, including sterically hindered bicyclic epoxides and vegetable oil-based epoxides, were suitable for the catalytic system, affording a series of cyclic carbonates in moderate to high yields. The tetrahydroxydiboron/TBAI cooperative catalytic mechanism was elucidated using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and electrospray ionization-high-resolution mass spectrometry. Results reveal that the tetrahydroxydiboron catalyst exhibits dual effects, activating both CO2 and epoxides; initially, it underwent the insertion of CO2 to form a boron-CO2 adduct and subsequently activated the epoxides through interaction of the B-O bond.
Collapse
Affiliation(s)
- Yuhui Luo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Fei Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Jichang Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| | - Ning Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, China
| |
Collapse
|
5
|
Paskaruk KM, Emslie DJH, Britten JF. A comparison of the coordination behaviour of R 2PCH 2BMe 2 (R = Me vs. Ph) ambiphilic ligands with late transition metals. Dalton Trans 2023; 52:15712-15724. [PMID: 37815843 DOI: 10.1039/d3dt02538a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A new synthesis that avoids the use of Me2PH is reported for (Me2PCH2BMe2)2, and this method was extended to the synthesis of (Ph2PCH2BMe2)2. The ligand precursor (Me2PCH2BMe2)2 did not react with [{M(μ-Cl)(cod)}2] (cod = 1,5-cyclooctadiene; M = Ir and Rh) or [PtCl2(cod)] at room temperature. However, after 12-48 hours at 65-70 °C, these reactions afforded (a) [Ir(cod)(μ-Cl)(Me2PCH2BMe2)] (1), (b) an equilibrium mixture of (Me2PCH2BMe2)2, [{Rh(μ-Cl)(cod)}2] and [Rh(cod)(μ-Cl)(Me2PCH2BMe2)] (2), and (c) cis-[Pt(μ-Cl)2(Me2PCH2BMe2)2] (3), respectively. By contrast, reactions between the phenyl-substituted analogue, (Ph2PCH2BMe2)2, and [{M(μ-Cl)(cod)}2] (cod = 1,5-cyclooctadiene; M = Ir and Rh) proceeded over the course of 1 hour at 20 °C to generate [M(cod)(μ-Cl)(Ph2PCH2BMe2)] (M = Ir (4) and Rh (5)), indicative of room temperature (Ph2PCH2BMe2)2 dissociation. Room temperature reactions of (Ph2PCH2BMe2)2 with [{Rh(μ-Cl)(coe)2}2] (coe = cyclooctene) using a 1 : 1 or 3 : 1 stoichiometry also afforded [{Rh(coe)(μ-Cl)(Ph2PCH2BMe2)}2] (6) or [RhCl(Ph2PCH2BMe2)3] (7), respectively, where the latter is a borane-appended analogue of Wilkinson's catalyst, and reactions of (Ph2PCH2BMe2)2 with [PtX2(cod)] (X = Cl or Me) yielded cis-[Pt(μ-Cl)2(Ph2PCH2BMe2)2] (8) and cis-[PtMe2(Ph2PCH2BMe2)2] (9). Compounds 1-9, (Me2PCH2BMe2)2 and (Ph2PCH2BMe2)2 were crystallographically characterized. In compounds 1-5 and 8, each chloride co-ligand is coordinated by the borane of an R2PCH2BMe2 ligand. Additionally, in the solid state structure of 6, each bridging chloride ligand interacts weakly with a pendent borane, and in 7, the chloride ligand is tightly coordinated to the borane of one Ph2PCH2BMe2 ligand and weakly coordinated to the borane of a second Ph2PCH2BMe2 ligand. By contrast, both boranes in 9 (and one of the three boranes in 7) are non-coordinated.
Collapse
Affiliation(s)
- Katia M Paskaruk
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - David J H Emslie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| | - James F Britten
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
6
|
Tran D, Braaksma AN, Andras AM, Boopathi SK, Darensbourg DJ, Wooley KL. Structural Metamorphoses of d-Xylose Oxetane- and Carbonyl Sulfide-Based Polymers In Situ during Ring-Opening Copolymerizations. J Am Chem Soc 2023; 145:18560-18567. [PMID: 37578470 PMCID: PMC10863053 DOI: 10.1021/jacs.3c05529] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 08/15/2023]
Abstract
Polymers constructed from copolymerizations of carbohydrates with C1 feedstocks are promising targets that provide transformation of sustainably sourced building blocks into next-generation, environmentally degradable plastic materials. In this work, the initial intention was to expand beyond polycarbonates prepared by the copolymerization of oxetanes derived from d-xylose with CO2 and incorporate sulfur atoms through the establishment of monothiocarbonates that would provide the ability to modulate the backbone compositions and result in unique effects upon the chemical, physical, and mechanical properties. Therefore, the syntheses of poly(1,2-O-isopropylidene-α-d-xylofuranose monothiocarbonate)s were investigated by ring-opening copolymerizations of 3,5-anhydro-1,2-O-isopropylidene-α-d-xylofuranose with carbonyl sulfide (COS) facilitated by (salen)CrCl/cocatalyst systems. Unexpectedly, when copolymerization temperatures exceeded 40 °C, oxygen/sulfur exchange reactions occurred, causing in situ dynamic backbone restructuring through a series of inter-related and complex mechanistic pathways that transformed monothiocarbonate monomeric repeating units into carbonate and thioether dimeric repeating units. These backbone structural compositional transformations were investigated through a combination of Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques and were demonstrated to be easily tuned via temperature and catalyst/cocatalyst stoichiometries. Furthermore, the regiochemistries of these d-xylose-based sulfur-containing polymers revealed that monothiocarbonate monomeric repeating units had a head-to-tail connectivity, while the carbonate and thioether dimeric repeating units had dual head-to-head and tail-to-tail connectivities. These sulfur-containing polymers exhibited enhanced thermal stabilities compared to their oxygen-containing polycarbonate analogues and revealed variations in the effects upon glass transition temperatures, demonstrating the effect of sulfur incorporation in the polymer backbone. These findings contribute to the advancement of sustainable polymer production by using feedstocks of natural origin coupled with COS.
Collapse
Affiliation(s)
- David
K. Tran
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Ashley N. Braaksma
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Autumn M. Andras
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Senthil K. Boopathi
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Donald J. Darensbourg
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Karen L. Wooley
- Departments
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
- Materials
Science & Engineering, Texas A&M
University, College
Station, Texas 77842, United States
- Chemical
Engineering, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|