1
|
Jensma A, Elders N, van den Berg KJ, Feringa BL. Waterborne polymers and coatings from bio-based butenolides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:9676-9681. [PMID: 39175958 PMCID: PMC11333933 DOI: 10.1039/d4gc03466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
In the quest for sustainable paints and coatings, bio-based resources for the polymeric binder constituents are key. Recently, we introduced poly-butenolides as bio-based acrylate replacement for solventborne and 100% solids (UV-curing) coatings. Here, we report the first step towards aqueous poly-butenolide dispersions, enabling the use of this novel binder technology platform in waterborne coatings.
Collapse
Affiliation(s)
- Andries Jensma
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen 9747 AG Groningen The Netherlands
| | - Niels Elders
- Department Resin Technology, Akzo Nobel Car Refinishes BV 2171 AJ Sassenheim The Netherlands
| | - Keimpe J van den Berg
- Department Resin Technology, Akzo Nobel Car Refinishes BV 2171 AJ Sassenheim The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC), University of Groningen 9747 AG Groningen The Netherlands
| |
Collapse
|
2
|
Edwards M, Pratley MT, Gordon CM, Teixeira RI, Ali H, Mahmood I, Lester R, Love A, Hermens JGH, Freese T, Feringa BL, Poliakoff M, George MW. Process Intensification of the Continuous Synthesis of Bio-Derived Monomers for Sustainable Coatings Using a Taylor Vortex Flow Reactor. Org Process Res Dev 2024; 28:1917-1928. [PMID: 38783853 PMCID: PMC11110062 DOI: 10.1021/acs.oprd.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
We describe the optimization and scale-up of two consecutive reaction steps in the synthesis of bio-derived alkoxybutenolide monomers that have been reported as potential replacements for acrylate-based coatings (Sci. Adv.2020, 6, eabe0026). These monomers are synthesized by (i) oxidation of furfural with photogenerated singlet oxygen followed by (ii) thermal condensation of the desired 5-hydroxyfuranone intermediate product with an alcohol, a step which until now has involved a lengthy batch reaction. The two steps have been successfully telescoped into a single kilogram-scale process without any need to isolate the 5-hydroxyfuranone between the steps. Our process development involved FTIR reaction monitoring, FTIR data analysis via 2D visualization, and two different photoreactors: (i) a semicontinuous photoreactor based on a modified rotary evaporator, where FTIR and 2D correlation spectroscopy (2D-COS) revealed the loss of the methyl formate coproduct, and (ii) our fully continuous Taylor Vortex photoreactor, which enhanced the mass transfer and permitted the use of near-stoichiometric equivalents of O2. The use of in-line FTIR monitoring and modeling greatly accelerated process optimization in the Vortex reactor. This led to scale-up of the photo-oxidation in 85% yield with a projected productivity of 1.3 kg day-1 and a space-time yield of 0.06 mol day-1 mL-1. Higher productivities could be achieved while sacrificing yield (e.g., 4 kg day-1 at 40% yield). The use of superheated methanol at 200 °C in a pressurized thermal flow reactor accelerated the second step, the thermal condensation of 5-hydroxyfuranone, from a 20 h batch reflux reaction (0.5 L, 85 g) to a space time of <1 min in a reactor only 3 mL in volume operating with projected productivities of >700 g day-1. Proof of concept for telescoping the two steps was established with an overall two-step yield of 67%, producing a process with a projected productivity of 1.1 kg day-1 for the methoxybutenolide monomer without any purification of the 5-hydroxyfuranone intermediate.
Collapse
Affiliation(s)
- Matthew
D. Edwards
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Matthew T. Pratley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Charles M. Gordon
- Scale-up
Systems Ltd., 23 Shelbourne
Road, Dublin 4, D04 PY68, Ireland
| | - Rodolfo I. Teixeira
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Hamza Ali
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Irfhan Mahmood
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Reece Lester
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Ashley Love
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Johannes G. H. Hermens
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas Freese
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ben L. Feringa
- Advanced
Research Centre CBBC, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Martyn Poliakoff
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Michael W. George
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
3
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Freese T, Meijer JT, Brands MB, Alachouzos G, Stuart MCA, Tarozo R, Gerlach D, Smits J, Rudolf P, Reek JNH, Feringa BL. Iron oxide-promoted photochemical oxygen reduction to hydrogen peroxide (H 2O 2). EES CATALYSIS 2024; 2:262-275. [PMID: 38222062 PMCID: PMC10782808 DOI: 10.1039/d3ey00256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 01/16/2024]
Abstract
Hydrogen peroxide (H2O2) is a valuable green oxidant with a wide range of applications. Furthermore, it is recognized as a possible future energy carrier achieving safe operation, storage and transportation. The photochemical production of H2O2 serves as a promising alternative to the waste- and energy-intensive anthraquinone process. Following the 12 principles of Green Chemistry, we demonstrate a facile and general approach to sustainable catalyst development utilizing earth-abundant iron and biobased sources only. We developed several iron oxide (FeOx) nanoparticles (NPs) for successful photochemical oxygen reduction to H2O2 under visible light illumination (445 nm). Achieving a selectivity for H2O2 of >99%, the catalyst material could be recycled for up to four consecutive rounds. An apparent quantum yield (AQY) of 0.11% was achieved for the photochemical oxygen reduction to H2O2 with visible light (445 nm) at ambient temperatures and pressures (9.4-14.8 mmol g-1 L-1). Reaching productivities of H2O2 of at least 1.7 ± 0.3 mmol g-1 L-1 h-1, production of H2O2 was further possible via sunlight irradiation and in seawater. Finally, a detailed mechanism has been proposed on the basis of experimental investigation of the catalyst's properties and computational results.
Collapse
Affiliation(s)
- Thomas Freese
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jelmer T Meijer
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Maria B Brands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Georgios Alachouzos
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7 9747AG Groningen The Netherlands
| | - Rafael Tarozo
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dominic Gerlach
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost Smits
- Shell Global Solutions International BV Grasweg 31 1031 HW Amsterdam The Netherlands
| | - Petra Rudolf
- Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747AG Groningen The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
5
|
Lepage ML, Alachouzos G, Hermens JGH, Elders N, van den Berg KJ, Feringa BL. Electron-Poor Butenolides: The Missing Link between Acrylates and Maleic Anhydride in Radical Polymerization. J Am Chem Soc 2023; 145:17211-17219. [PMID: 37498188 PMCID: PMC10416300 DOI: 10.1021/jacs.3c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 07/28/2023]
Abstract
Butenolides are a class of 5-membered lactones that hold great potential as bio-based monomers to replace oil-derived acrylates, of which they are cyclic analogues. Despite this structural resemblance, the reactivity of the unsaturated ester moiety of electron-poor butenolides leans toward that of maleic anhydride, another essential monomer that does not homopolymerize but copolymerizes in a highly alternating fashion with polarized electron-rich comonomers. By studying the reactivity of 5-methoxy and 5-acyloxy butenolides through a combination of kinetics and density functional theory (DFT) experiments, we explain why electron-poor butenolides constitute a missing link between acrylates and maleic anhydride in radical polymerization.
Collapse
Affiliation(s)
- Mathieu L. Lepage
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Georgios Alachouzos
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Johannes G. H. Hermens
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Niels Elders
- Department
Resin Technology, Akzo Nobel Car Refinishes
BV, Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Keimpe J. van den Berg
- Department
Resin Technology, Akzo Nobel Car Refinishes
BV, Rijksstraatweg 31, 2171 AJ Sassenheim, The Netherlands
| | - Ben L. Feringa
- Stratingh
Institute for Chemistry, Advanced Research Center Chemical Building
Blocks Consortium (ARC CBBC), University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|