1
|
Jiang M, Zhao X, Zhang C, Liu R, Hu J, Lv Y. Thermus thermophilus Argonaute-Mediated Single Particle Counting Platform for Multiplex Cancer-Related Biomarkers Detection. Anal Chem 2025. [PMID: 40400168 DOI: 10.1021/acs.analchem.5c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) system has achieved remarkable success in the field of nucleic acid detection, while its Achilles' heel lies in the difficulties encountered in flexibility regarding the multiplex detection. As a sister system of CRISPR-Cas, prokaryotic Argonautes (pAgos) have precise recognition, multiturnover, and more importantly multiple specific cleavage characteristics, which is a potential candidate for the next generation of multiplex detection. Herein, a single particle counting platform was developed for the simultaneous detection of three colorectal cancer-related miRNAs (miR-141, miR-31, and miR-21) by combining single particle inductively coupled plasma mass spectrometry (SP-ICPMS) with the Thermus thermophilus Argonaute protein (TtAgo), with nanoparticles as signal probes for cleavage. The platform demonstrated high sensitivity (aM level) and specificity due to the dual-cycle mechanism of exponential isothermal amplification (EXPAR) and TtAgo cleavage, as well as the combination of TtAgo's specific cleavage capability and the multiplex detection advantages of metal stable isotope tagging. Additionally, the platform showed good robustness in human serum and cell extracts, indicating significant potential in clinical applications.
Collapse
Affiliation(s)
- Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610041, China
| | - Chengchao Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2G3, Alberta, Canada
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Huang Z, Xie X, Wu Y, Liu R, Lv Y. Breaking Barcode Limits: Metal Nanoparticle Lego Brick Self-Assembly for High-Throughput Screening. J Am Chem Soc 2025; 147:4904-4914. [PMID: 39745059 DOI: 10.1021/jacs.4c13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As precision medicine increasingly reveals the biological diversity among individuals, the demand for higher-throughput screening techniques, particularly suspension array technologies capable of more multiplexing from smaller samples in a single run, is intensifying. However, advancements in the multiplexing capability of current suspension platforms have lagged with limited alleviation, necessitating breakthroughs for innovative solutions that enable larger-scale measurements. Here, we introduce such a breakthrough with a novel mass-cytometric barcode engineering by metal nanoparticle-based "Lego Brick"-like self-assembly for high-throughput barcode design and capacity amplification. The suspension array capacity can be expanded to over 20,500 unique barcodes by flexibly assembling just 10 types of barcoding units (metal nanoparticles) onto the surface of the barcoding center (magnetic spheres) through a universal biotin-streptavidin binding template, significantly enhancing both throughput and versatility. Further multiplexed immunoassay, termed MassMAP, demonstrates high-throughput profiling of cancer biomarkers, highlighting the revolutionary potential of Lego Brick self-assembly in massive cytometric screening for higher-throughput applications.
Collapse
Affiliation(s)
- Zili Huang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yi Wu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
3
|
Zhang C, Zhao X, Chen X, Lin X, Huang Z, Hu J, Liu R, Lv Y. CRISPR/Cas12a assay for amol level microRNA by combining enzyme-free amplification and single particle analysis. Chem Commun (Camb) 2024; 60:13259-13262. [PMID: 39445763 DOI: 10.1039/d4cc04534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
CRISPR/Cas systems are increasingly utilized for sensitive miRNA detection through enzyme-based pre-amplification. To address challenges such as high costs, non-specific amplification, and interference from primer residues in pre-amplification strategies, herein a dual amplification CRISPR miRNA assay was developed by combining enzyme-free HCR with single-particle analysis. Attomolar detection limits, excellent selectivity, and practicability were achieved by applying this method.
Collapse
Affiliation(s)
- Chengchao Zhang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu, Seventh People's Hospital, Chengdu 610041, P. R. China
| | - Xiao Chen
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xu Lin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Zili Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta, T6G 2G3, Canada
| | - Rui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
4
|
Wei Y, Hu Y, Zhang C, Liu R, Lv Y. Single Particle Analysis-Enhanced DNA Walking Machine for Sensitive miRNA Detection. Anal Chem 2024; 96:11566-11571. [PMID: 38940610 DOI: 10.1021/acs.analchem.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
DNA walking machines have achieved significant breakthroughs in areas such as biosensing, bioimaging, and early cancer diagnosis, facilitated by the self-assembly of DNA or its combination with other materials, such as magnetic beads and metal nanoparticles. However, current DNA walking machine strategies are constantly challenged by inadequate analytical sensitivity, while sophisticated signal amplification procedures are often indispensable. Single-particle inductively coupled plasma mass spectrometry (SP-ICPMS) provides superior sensitivity and can effectively discriminate between background noise and detected signals due to the large number of metal atoms in a nanoparticle and the concentrating effect of single nanoparticle detection. In this study, we present a novel approach utilizing single nanoparticle counting and duplex-specific nuclease (DSN)-assisted signal amplification to construct a 3D DNA walking machine for detecting the aggressive prostate cancer (PCa) biomarker miRNA-200c. The proposed strategy showed an improvement in sensitivity with a detection limit (LOD) of 0.93 pM (28 amol) and was successfully applied in human serum samples. To the best of our knowledge, this is the first report of the DNA walking machine with single nanoparticle counting study.
Collapse
Affiliation(s)
- Yanxue Wei
- Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
| | - Yueli Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, PR China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
5
|
Zhang C, Zhao X, Huang Z, Li Z, Hu J, Liu R, Lv Y. Highly sensitive detection of aflatoxin B1 byCRISPR/Cas12a-assisted single nanoparticle counting. Food Chem 2024; 443:138557. [PMID: 38280363 DOI: 10.1016/j.foodchem.2024.138557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) and CRISPR-associated protein (Cas) have gained extensive applications in bioassays. However, CRISPR-based detection platforms are often hampered by limited analytical sensitivity, while nucleic acid-based amplification strategies are usually indispensable for additional signal enhancement with potential risks of amplification leakages. To address these challenges, an amplification-free CRISPR-based bioassay of aflatoxin B1 (AFB1) was proposed by applying single nanoparticle counting. Single-particle mode inductively coupled plasma mass spectrometry (Sp-ICPMS) has been regarded as a sensitive tool for nanoparticle counting since one nanoparticle can generate considerable signals above backgrounds. With AFB1, activator strands were introduced to initiate the trans-cleavage of CRISPR/Cas12a for cutting the nanoparticles-tagged-magnetic beads, which were transduced to nanoparticle count signals after separation. Finally, a pico-mole level limit-of-detections (LODs) with moderate selectivity was achieved. Certified reference materials (CRMs) analysis and recovery tests were conducted with promising results. To our best knowledge, this is the first report of the single particle counting-based CRISPR/Cas12a biosensing study.
Collapse
Affiliation(s)
- Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610041, PR China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
6
|
Zhao NN, Zhang X, Zou X, Zhang Y, Zhang CY. Controllable assembly of dendritic DNA nanostructures for ultrasensitive detection of METTL3-METTL14 m 6A methyltransferase activity in cancer cells and human breast tissues. Biosens Bioelectron 2023; 228:115217. [PMID: 36924687 DOI: 10.1016/j.bios.2023.115217] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
N6-Methyladenosine (m6A) is a reversible chemical modification in eukaryotic messenger RNAs and long noncoding RNAs. The aberrant expression of RNA methyltransferase METTL3-METTL14 complex may change the m6A methylation level and cause multiple diseases including cancers. The conventional METTL3-METTL14 assays commonly suffer from time-consuming procedures and poor sensitivity. Herein, we develop a controllable amplification machinery based on MazF-activated terminal deoxynucleotidyl transferase (TdT)-assisted dendritic DNA structure assembly for ultrasensitive detection of METTL3-METTL14 complex activity in cancer cells and breast tissues. The presence of METTL3-METTL14 complex catalyzes the formation of m6A in detection probe, effectively preventing the cleavage of methylated detection probes by MazF. The methylated detection probes with 3'-OH termini can function as the primers for template-free polymerization catalyzed by TdT on magnetic beads (MBs), producing long chains of poly-thymidine (poly-T) sequences. Then poly-T sequences hybridize with signal probes that contain poly-adenine (poly-A) sequence, inducing TdT-mediated polymerization and the subsequent hybridization with more poly-A signal probes for generating dendritic DNA nanostructures assembled on MBs. After magnetic separation and elevated temperature treatment, the signal probes are disassembled from MBs to generate a high fluorescence signal. This method possesses excellent specificity and high sensitivity with a limit of detection (LOD) of 2.61 × 10-15 M, and it can accurately quantify cellular METTL3-METTL14 complex at single-cell level. Furthermore, it can screen inhibitors, evaluate kinetic parameters, and discriminate breast cancer tissues from normal tissues.
Collapse
Affiliation(s)
- Ning-Ning Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Xinyi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Fan W, Dong Y, Ren W, Liu C. Single microentity analysis-based ultrasensitive bioassays: Recent advances, applications, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
8
|
Li Y, Huang Z, Li Z, Li C, Liu R, Lv Y. Mass Spectrometric Multiplex Detection of MicroRNA and Protein Biomarkers for Liver Cancer. Anal Chem 2022; 94:17248-17254. [PMID: 36448711 DOI: 10.1021/acs.analchem.2c04171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The occurrence of cancers is often accompanied by the abnormal expression of several sorts of biomarkers (e.g., nucleic acids and proteins). The multiplex assessment of them would substantially aid in the early detection and precise diagnosis, which is often hampered by their different detection schemes, different reaction matrix and reagents, and spectral overlapping. Herein, we propose a simple and sensitive mass spectrometric method for the multiplex detection of nucleic acid and protein, in which liver cancer-related biomarkers miRNA 223 and alpha-fetoprotein (AFP) were selected as model analytes. The self-amplification effect of metal atom-based nanoparticle probes can provide high sensitivity in complex serum samples without any additional amplification procedure. The detection limits for the simultaneous detection of miRNA 223 and AFP were 103 (2.1 pM) and 219 amol (0.15 ng/mL), respectively, with high specificity and selectivity. The proposed method is potentially useful for the rapid screening of cancers.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu 610064 Sichuan, China
| | - Caixia Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064 Sichuan, China
| |
Collapse
|
9
|
Jiang M, Zhou J, Xie X, Huang Z, Liu R, Lv Y. Single Nanoparticle Counting-Based Liquid Biopsy for Cancer Diagnosis. Anal Chem 2022; 94:15433-15439. [DOI: 10.1021/acs.analchem.2c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Jing Zhou
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
- Analytical & Testing Center, Sichuan University, Chengdu610064, China
| |
Collapse
|
10
|
Huang Z, Zhao X, Hu J, Zhang C, Xie X, Liu R, Lv Y. Single-Nanoparticle Differential Immunoassay for Multiplexed Gastric Cancer Biomarker Monitoring. Anal Chem 2022; 94:12899-12906. [PMID: 36069220 DOI: 10.1021/acs.analchem.2c03013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Precision medicine demands the best application of multiple unambiguous biomarkers to bring uniform decisions in disease prognosis. The remarkable development of heterogeneous immunoassay greatly promotes precision medicine when combined with the biomarker combination strategy. Nevertheless, the cumbersome washing steps in heterogeneous immunoassay have inevitably compromised the accuracy because of the sample losses and nature change of the matrix, challenging the further exploration of a more facile and lower limit-of-detection analysis. The new methodologies with high throughputs and specificity are never out of date to provide simultaneous evaluations and uniform decisions on multiple analytes through a simple process. Herein, we propose a new wash-free immunoassay, named differential assay, for multiplexed biomarker monitoring. The method is based on counting the number difference of unbound nanoparticle tags before and after immunoreactions from a solid support (i.e., magnetic microsphere) by single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS), discarding the tedious washing steps. We primarily explore the proof-of-concept proposal within two types (sandwich and competitive assay), demonstrating the good feasibility for further facile clinical practice. To provide efficient multiplexed evaluations, we synthesized PtNPs with four diameters and screened the most suitable size for efficient differential immunoassay. The wash-free strategy was successfully utilized in simultaneous serological biomarker (CA724, CA199, and CEA) evaluation, with results in good accordance with those measured by the clinical routine method. Potentially, the proposed differential bioassay can be regarded as a more facile and valuable tool in malignancy prognosis and cancer recurrence monitoring.
Collapse
Affiliation(s)
- Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xin Zhao
- Department of Clinical Laboratory, Chengdu Seventh People's Hospital, Chengdu 610041, Sichuan, P. R. China
| | - Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|