1
|
Kengwerere MK, Kenyaga JM, Xiao P, Gunaga SS, Scott FJ, Wutoh-Hughes X, Wang J, Lum B, Sun Y, Mentink-Vigier F, Wang T, Qiang W. Structural convergence and membrane interactions of Aβ 1-42 along the primary nucleation process studied by solid state NMR. Commun Chem 2025; 8:131. [PMID: 40307575 PMCID: PMC12043865 DOI: 10.1038/s42004-025-01537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
Non-specific disruption of cellular membranes induced by amyloidogenic aggregation of β-amyloid (Aβ) peptides remains a viable cytotoxicity mechanism in Alzheimer's disease (AD). Obtaining structural information about the intermediate states of Aβ-membrane systems and their molecular interactions is challenging due to their heterogeneity and low abundance. Here, we systematically study the molecular interactions of membrane-associated Aβ1-42 peptides using solid-state nuclear magnetic resonance (ssNMR) spectroscopy, focusing on the primary nucleation phase of the fibrillation process. Compared to the less pathogenic Aβ1-40 peptide, Aβ1-42 forms smaller oligomers prior to fibrillation, as evidenced by a higher overall population of lipid-proximity peptides. Aβ1-42 also exhibits more pronounced residue-specific contacts with phospholipid headgroups compared to Aβ1-40, with multiple lipid-proximity segments throughout the entire primary sequence. The segments involved in initial inter-strand assembly overlap with those located near the lipid headgroups in Aβ1-42, whereas these two segments are distinct in Aβ1-40. ssNMR spectroscopy with sensitivity enhanced by Dynamic nuclear polarization (DNP) confirmed local secondary structural convergence during the nucleation process of Aβ1-42 and the presence of long-range tertiary contacts at early stages of nucleation. Overall, our results provide a molecular-level understanding of the Aβ1-42 nucleation process in a membrane-like environment and its membrane-disrupting intermediates. The comparison between Aβ1-42 and Aβ1-40 explains its higher cytotoxicity from the perspective of membrane disruption.
Collapse
Affiliation(s)
- Maurine K Kengwerere
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - June M Kenyaga
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Peng Xiao
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Shubha S Gunaga
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Xyomara Wutoh-Hughes
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - James Wang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Brian Lum
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA
| | - Yan Sun
- Small Scale System Integration and Packaging (S3IP), Binghamton University, Binghamton, NY, USA
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Wei Qiang
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY, USA.
| |
Collapse
|
2
|
Fukase K, Iida-Adachi A, Nabika H. Spectral Heterogeneity of Thioflavin T Binding to Aβ42:Aβ40 Mixed Fibrils: Implications for Alzheimer's Disease Screening. ACS OMEGA 2025; 10:17043-17050. [PMID: 40321538 PMCID: PMC12044488 DOI: 10.1021/acsomega.5c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025]
Abstract
In Alzheimer's disease (AD), the amyloid β (Aβ) protein self-assembles, whereby Aβ40 and Aβ42 peptides interact, forming a mixed fibrillar assembly. Evaluating local Aβ40:Aβ42 mixed fibril conformations remains challenging, requiring a simple method to compare microscopic (molecular-scale) and macroscopic (plaque-scale) findings. The aim of the current study was to design a method to analyze Aβ fibril formation in a single sample without drying via fluorescent thioflavin T (ThT) labeling. The analysis revealed spectral heterogeneity associated with the ThT-binding mixed fibrils. Although the fluorescence wavelength associated with higher Aβ42:Aβ40 fibril ratios remained relatively unchanged, those associated with lower Aβ42:Aβ40 fibril ratios exhibited significant heterogeneity. This suggests that the local β-sheet structure exhibits significant variability at lower Aβ42:Aβ40 ratios. This specific feature can be attributed to differences in the shape of the "funnel" in the energy landscape during Aβ assembly. Thus, our protocol facilitates rapid and efficient screening of fibril conformational alterations compared to conventional techniques. Cumulatively, our results demonstrate that comparing the spectral features of ThT with the kinetic and morphological characteristics of a single sample provides specific molecular insights related to the origin of Aβ42:Aβ40 ratio-dependent molecular mechanism-insights that cannot be detected through conventional kinetic and morphological analyses alone.
Collapse
Affiliation(s)
- Kiyo Fukase
- Graduate
School of Science and Engineering, Yamagata
University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
| | - Akane Iida-Adachi
- Graduate
School of Science and Engineering, Yamagata
University, 1-4-12, Kojirakawa, Yamagata 990-8560, Japan
| | - Hideki Nabika
- Faculty
of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| |
Collapse
|
3
|
Liu Q, Song S, Liu L, Hong W. In Vivo Seeding of Amyloid-β Protein and Implications in Modeling Alzheimer's Disease Pathology. Biomolecules 2025; 15:571. [PMID: 40305318 PMCID: PMC12024744 DOI: 10.3390/biom15040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent advances in Aβ seeding studies offer a promising avenue for exploring the mechanisms underlying amyloid deposition and the complex pathological features of AD. However, the extent to which inoculated Aβ seeds can induce reproducible and reliable pathological manifestations remains unclear due to significant variability across studies. In this review, we will discuss several factors that contribute to the induction or acceleration of amyloid deposition and consequent pathologies. Specifically, we focus on the diversity of host animals, sources and recipe of Aβ seeds, and inoculating strategies. By integrating these key aspects, this review aims to offer a comprehensive perspective on Aβ seeding in AD and provide guidance for modeling AD pathogenesis through the exogenous introduction of Aβ seeds.
Collapse
Affiliation(s)
- Qianmin Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Simin Song
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518055, China
| | - Lu Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
4
|
Wei Y, Bai Q, Ning X, Bai X, Lv J, Li M. Covalent organic framework derived single-atom copper nanozymes for the detection of amyloid-β peptide and study of amyloidogenesis. Anal Bioanal Chem 2025; 417:1081-1092. [PMID: 39681699 DOI: 10.1007/s00216-024-05683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Sensitive and accurate detection of the amyloid-β (Aβ) monomer is of fundamental significance for early diagnosis of Alzheimer's disease (AD). Herein, inspired by the specific Cu-Aβ monomer coordination, a cutting-edge colorimetric assay based on single-atom Cu anchored N-doped carbon nanospheres (Cu-NCNSs) was developed for Aβ monomer detection and an amyloidogenesis study. By directly pyrolyzing Cu2+-incorporated covalent organic frameworks (COFs), the resulting Cu-NCNSs with a high loading of Cu (8.04 wt %) exhibited outstanding peroxidase-like activity. The strong binding affinity of Aβ monomer to Cu-NCNSs effectively inhibited their catalytic activity, providing the basis for the colorimetric assay. The Cu-NCNSs-based sensor showed a detection limit of 1.182 nM for Aβ monomer, surpassing traditional techniques in terms of efficiency, accuracy and simplicity. Moreover, the system was successfully utilized for Aβ monomer detection in rat cerebrospinal fluid (CSF). Notably, the distinct inhibitory effects of monomeric and aggregated Aβ species on the catalytic activity of Cu-NCNSs were allowed for monitoring of the dynamic aggregation process of Aβ. Compared to thioflavin T (ThT), the most widely used amyloid dye, the detection system exhibited greater sensitivity towards toxic Aβ oligomers, which was crucial for early AD diagnosis and treatment. Our work not only sheds light on the rational design of highly active single-atom nanozymes from COFs but also expands the potential applications of nanozymes in early disease diagnosis.
Collapse
Affiliation(s)
- Yuxin Wei
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Qingqing Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xinlu Ning
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaofan Bai
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
- Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
5
|
Chang HW, Yang CI, Chan JCC. Incubation of Amyloidogenic Peptides in Reverse Micelles Allow Active Control of Oligomer Size and Study of Protein-Protein Interactions. ChemMedChem 2024; 19:e202400310. [PMID: 39090029 DOI: 10.1002/cmdc.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Studies of the structure and dynamics of oligomeric aggregates of amyloidogenic peptides pose challenges due to their transient nature. This concept article provides a brief overview of various nucleation mechanisms with reference to the classical nucleation theory and illustrates the advantages of incubating amyloidogenic peptides in reverse micelles (RMs). The use of RMs not only facilitates size regulation of oligomeric aggregates but also provides an avenue to explore protein-protein interactions among the oligomeric aggregates of various amyloidogenic peptides. Additionally, we envision the feasibility of preparing brain tissue-derived oligomeric aggregates using RMs, potentially advancing the development of monoclonal antibodies with enhanced potency against these pathological species in vivo.
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chien-I Yang
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
6
|
Meng F, Kim JY, Louis JM, Chung HS. Single-Molecule Characterization of Heterogeneous Oligomer Formation during Co-Aggregation of 40- and 42-Residue Amyloid-β. J Am Chem Soc 2024; 146:24426-24439. [PMID: 39177153 DOI: 10.1021/jacs.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
7
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Ahyayauch H, Masserini ME, Alonso A, Goñi FM. Understanding Aβ Peptide Binding to Lipid Membranes: A Biophysical Perspective. Int J Mol Sci 2024; 25:6401. [PMID: 38928107 PMCID: PMC11203662 DOI: 10.3390/ijms25126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Aβ peptides are known to bind neural plasma membranes in a process leading to the deposit of Aβ-enriched plaques. These extracellular structures are characteristic of Alzheimer's disease, the major cause of late-age dementia. The mechanisms of Aβ plaque formation and deposition are far from being understood. A vast number of studies in the literature describe the efforts to analyze those mechanisms using a variety of tools. The present review focuses on biophysical studies mostly carried out with model membranes or with computational tools. This review starts by describing basic physical aspects of lipid phases and commonly used model membranes (monolayers and bilayers). This is followed by a discussion of the biophysical techniques applied to these systems, mainly but not exclusively Langmuir monolayers, isothermal calorimetry, density-gradient ultracentrifugation, and molecular dynamics. The Methodological Section is followed by the core of the review, which includes a summary of important results obtained with each technique. The last section is devoted to an overall reflection and an effort to understand Aβ-bilayer binding. Concepts such as Aβ peptide membrane binding, adsorption, and insertion are defined and differentiated. The roles of membrane lipid order, nanodomain formation, and electrostatic forces in Aβ-membrane interaction are separately identified and discussed.
Collapse
Affiliation(s)
- Hasna Ahyayauch
- Departamento de Bioquímica, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, 48940 Leioa, Spain; (H.A.); (A.A.)
- Institut Supérieur des Professions Infirmières et Techniques de Santé, Rabat 60000, Morocco
- Laboratoire de Biologie et Santé, Unité Neurosciences, Neuroimmunologie et Comportement, Faculty of Sciences, Ibn Tofail University, Kénitra 14000, Morocco
| | - Massimo E. Masserini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alicia Alonso
- Departamento de Bioquímica, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, 48940 Leioa, Spain; (H.A.); (A.A.)
| | - Félix M. Goñi
- Departamento de Bioquímica, Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, 48940 Leioa, Spain; (H.A.); (A.A.)
| |
Collapse
|
9
|
Yeh CT, Chang HW, Hsu WH, Huang SJ, Wu MH, Tu LH, Lee MC, Chan JCC. Beta Amyloid Oligomers with Higher Cytotoxicity have Higher Sidechain Dynamics. Chemistry 2023; 29:e202301879. [PMID: 37706579 DOI: 10.1002/chem.202301879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/15/2023]
Abstract
The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of β-amyloid (Aβ) peptides has long been an enigma. Here we show that the size of Aβ40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aβ40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aβ40 oligomers could also be correlated to the motional dynamics of the sidechains.
Collapse
Affiliation(s)
- Chen-Tsen Yeh
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Wen-Hsin Hsu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
10
|
Arar S, Haque MA, Kayed R. Protein aggregation and neurodegenerative disease: Structural outlook for the novel therapeutics. Proteins 2023:10.1002/prot.26561. [PMID: 37530227 PMCID: PMC10834863 DOI: 10.1002/prot.26561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023]
Abstract
Before the controversial approval of humanized monoclonal antibody lecanemab, which binds to the soluble amyloid-β protofibrils, all the treatments available earlier, for Alzheimer's disease (AD) were symptomatic. The researchers are still struggling to find a breakthrough in AD therapeutic medicine, which is partially attributable to lack in understanding of the structural information associated with the intrinsically disordered proteins and amyloids. One of the major challenges in this area of research is to understand the structural diversity of intrinsically disordered proteins under in vitro conditions. Therefore, in this review, we have summarized the in vitro applications of biophysical methods, which are aimed to shed some light on the heterogeneity, pathogenicity, structures and mechanisms of the intrinsically disordered protein aggregates associated with proteinopathies including AD. This review will also rationalize some of the strategies in modulating disease-relevant pathogenic protein entities by small molecules using structural biology approaches and biophysical characterization. We have also highlighted tools and techniques to simulate the in vivo conditions for native and cytotoxic tau/amyloids assemblies, urge new chemical approaches to replicate tau/amyloids assemblies similar to those in vivo conditions, in addition to designing novel potential drugs.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, 77555, USA
| |
Collapse
|
11
|
Seira Curto J, Fernandez MR, Cladera J, Benseny-Cases N, Sanchez de Groot N. Aβ40 Aggregation under Changeable Conditions. Int J Mol Sci 2023; 24:ijms24098408. [PMID: 37176115 PMCID: PMC10179685 DOI: 10.3390/ijms24098408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Homeostasis is crucial for cell function, and disturbances in homeostasis can lead to health disorders. Under normal conditions, intracellular pH is maintained between 7.35 and 7.45. Altered endosomal and lysosomal pH together with a general drop in brain pH are associated with the aggregation of amyloid-β-peptide (Aβ) and the development of Alzheimer's disease. Under acidic conditions, close to the Aβ isoelectric point, the absence of charges favors the formation of intermolecular contacts and promotes aggregation. Here, we analyzed how pH levels affect the aggregation of Aβ40 considering the variations in brain pH and the coexistence of different aggregated conformations. Our results suggest that different macromolecular conformations can interact with each other and influence the aggregation process. In addition, we showed that neutral pH and physiological salt concentrations favor a slow aggregation, resulting in ordered, stable fibrils, with low cytotoxic effects. Overall, we highlight the complexity of the aggregation processes occurring in different physiological and pathological environments.
Collapse
Affiliation(s)
- Jofre Seira Curto
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Rosario Fernandez
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Cladera
- Unitat de Biofísica, Departament de Bioquímica i Biologia Molecular, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Núria Benseny-Cases
- Unitat de Biofísica, Departament de Bioquímica i Biologia Molecular, Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Natalia Sanchez de Groot
- Unitat de Bioquímica, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
12
|
Rodgers A, Sawaged M, Ostrovsky D, Vugmeyster L. Effect of Cross-Seeding of Wild-Type Amyloid-β 1-40 Peptides with Post-translationally Modified Fibrils on Internal Dynamics of the Fibrils Using Deuterium Solid-State NMR. J Phys Chem B 2023; 127:2887-2899. [PMID: 36952330 PMCID: PMC10257444 DOI: 10.1021/acs.jpcb.2c07817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Post-translationally modified (PTM) amyloid-β (Aβ) species can play an important role in modulating Alzheimer's disease pathology. These relatively less populated modifications can cross-seed the wild-type Aβ peptides to produce fibrils that retain many structural and functional features of the original PTM variants. We focus on studies of internal flexibility in the cross-seeded Aβ1-40 fibrils originating from seeding with two PTM variants with modifications in the disordered N-terminal domain: ΔE3 truncation and S8-phosphorylation. We employ an array of 2H solid-state NMR techniques, including line shape analysis over a broad temperature range, longitudinal relaxation, and quadrupolar CPMG, to assess the dynamics of the cross-seeded fibrils. The focus is placed on selected side-chain sites in the disordered N-terminal domain (G9 and V12) and hydrophobic core methyl and aromatic groups (L17, L34, M35, V36, and F19). We find that many of the essential features of the dynamics present in the original PTM seeds persist in the cross-seeded fibrils, and several of the characteristic features are even enhanced. This is particularly true for the activation energies of the rotameric motions and large-scale rearrangements of the N-terminal domain. Thus, our results on the dynamics complement prior structural and cell toxicity studies, suggesting that many PTM Aβ species can aggressively cross-seed the wild-type peptide in a manner that propagates the PTM's signature.
Collapse
Affiliation(s)
- Aryana Rodgers
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew Sawaged
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
13
|
Ghosh S, Ali R, Verma S. Aβ-oligomers: A potential therapeutic target for Alzheimer's disease. Int J Biol Macromol 2023; 239:124231. [PMID: 36996958 DOI: 10.1016/j.ijbiomac.2023.124231] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
The cascade of amyloid formation relates to multiple complex events at the molecular level. Previous research has established amyloid plaque deposition as the leading cause of Alzheimer's disease (AD) pathogenesis, detected mainly in aged population. The primary components of the plaques are two alloforms of amyloid-beta (Aβ), Aβ1-42 and Aβ1-40 peptides. Recent studies have provided considerable evidence contrary to the previous claim indicating that amyloid-beta oligomers (AβOs) as the main culprit responsible for AD-associated neurotoxicity and pathogenesis. In this review, we have discussed the primary features of AβOs, such as assembly formation, the kinetics of oligomer formation, interactions with various membranes/membrane receptors, the origin of toxicity, and oligomer-specific detection methods. Recently, the discovery of rationally designed antibodies has opened a gateway for using synthesized peptides as a grafting component in the complementarity determining region (CDR) of antibodies. Thus, the Aβ sequence motif or the complementary peptide sequence in the opposite strand of the β-sheet (extracted from the Protein Data Bank: PDB) helps design oligomer-specific inhibitors. The microscopic event responsible for oligomer formation can be targeted, and thus prevention of the overall macroscopic behaviour of the aggregation or the associated toxicity can be achieved. We have carefully reviewed the oligomer formation kinetics and associated parameters. Besides, we have depicted a thorough understanding of how the synthesized peptide inhibitors can impede the early aggregates (oligomers), mature fibrils, monomers, or a mixture of the species. The oligomer-specific inhibitors (peptides or peptide fragments) lack in-depth chemical kinetics and optimization control-based screening. In the present review, we have proposed a hypothesis for effectively screening oligomer-specific inhibitors using the chemical kinetics (determining the kinetic parameters) and optimization control strategy (cost-dependent analysis). Further, it may be possible to implement the structure-kinetic-activity-relationship (SKAR) strategy instead of structure-activity-relationship (SAR) to improve the inhibitor's activity. The controlled optimization of the kinetic parameters and dose usage will be beneficial for narrowing the search window for the inhibitors.
Collapse
|
14
|
Wu Y, Huang S, Wu M, Tu L, Lee M, Chan JCC. Aβ
42
oligomers can seed the fibrillization of Aβ
40
peptides. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi‐Shan Wu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Meng‐Hsin Wu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ling‐Hsien Tu
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Ming‐Che Lee
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | |
Collapse
|