1
|
Peng ZA, Ling C, Huang X, Lu Y, Yang XH. Photoinduced 1,2-Carbosulfenylation of Alkenes. Org Lett 2025. [PMID: 40434353 DOI: 10.1021/acs.orglett.5c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Herein, we report a mild, efficient photocatalytic protocol for 1,2-carbosulfenylation of alkenes using N-hydroxyphthalimide esters as carbon sources and alkyl thiosulfate salts as sulfur sources. This operationally simple methodology provides a novel avenue for synthesizing dialkylthioether, including methylthioether, derivatives. The reaction has a broad substrate scope and excellent functional group tolerance. Mechanistic studies have elucidated the mechanism and confirmed the preferential participation of alkyl radicals in the reaction, producing the highly regioselective 1,2-carbosulfenylation of alkenes.
Collapse
Affiliation(s)
- Ze-An Peng
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chen Ling
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xuebin Huang
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yu Lu
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
2
|
Li ZQ, Alturaifi TM, Cao Y, Joannou MV, Liu P, Engle KM. Hemilabile and Redox-Active Quinone Ligands Unlock sp 3-Rich Couplings in Nickel-Catalyzed Olefin Carbosulfenylation. Angew Chem Int Ed Engl 2024; 63:e202411870. [PMID: 39222319 DOI: 10.1002/anie.202411870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
A three-component coupling approach toward structurally complex dialkylsulfides is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and alkylsulfenamide (N-S) electrophiles. Efficient catalytic turnover is facilitated using a tailored N-S electrophile containing an N-methyl methanesulfonamide leaving group, allowing catalyst loadings as low as 1 mol %. Regioselectivity is controlled by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, amides, sulfinamides, phosphoramides, and carbamates. Key to the development of this transformation is the identification of quinones as a family of hemilabile and redox-active ligands that tune the steric and electronic properties of the metal throughout the catalytic cycle. Density functional theory (DFT) results show that the duroquinone (DQ) ligand adopts different coordination modes in different stages of the Ni-catalyzed 1,2-carbosulfenylation-binding as an η6 capping ligand to stabilize the precatalyst/resting state and prevent catalyst decomposition, binding as an X-type redox-active durosemiquinone radical anion to promote alkene migratory insertion with a less distorted square planar Ni(II) center, and binding as an L-type ligand to promote N-S oxidative addition at a relatively more electron-rich Ni(I) center.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Turki M Alturaifi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Yilin Cao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew V Joannou
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, NJ, 08903, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, USA
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
3
|
Cui J, Wang X, Zeng R. Directed copper-catalyzed C-H functionalization of unactivated olefins with azodicarbonamide compounds. RSC Adv 2024; 14:27475-27480. [PMID: 39221125 PMCID: PMC11359497 DOI: 10.1039/d4ra04113e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The copper-catalyzed strategy employing the 8-aminoquinoline directing group has proven to be a highly advantageous approach for functionalizing C-H bonds. In this study, we present the successful application of this strategy to accomplish Heck-type coupling reactions and construct β-lactam skeletons, simultaneously introducing a unique cyano functional group. The resulting Heck-type coupling products demonstrate good stereo- and region-selectivity. Initial mechanistic investigations indicate that the reaction proceeds via a radical coupling mechanism, exhibiting a wide substrate scope and delivering good yields.
Collapse
Affiliation(s)
- Jing Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Xiaoya Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
4
|
Yang Z, Liu J, Xie L. Stabilized Carbon-Centered Radical-Mediated Carbosulfenylation of Styrenes: Modular Synthesis of Sulfur-Containing Glycine and Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402428. [PMID: 38852190 PMCID: PMC11304285 DOI: 10.1002/advs.202402428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Sulfur-containing amino acids and peptides play critical roles in organisms. Thiol-ene reactions between the thiol residues of L-cysteine and the alkenyl fragments in the designed coupling partners serve as primary tools for constructing C─S bonds in the synthesis of unnatural sulfur-containing amino acid derivatives. These reactions are favored due to the preference for hydrogen transfer from thiol to β-sulfanyl carbon radical intermediates. In this paper, the study proposes utilizing carbon-centered radicals stabilized by the capto-dative effect, generated under photocatalytic conditions from N-aryl glycine derivatives. The aim is to compete with the thiol hydrogen, enabling radical C─C bond formation with β-sulfanyl carbon radicals. This protocol is robust in the presence of air and water, offers significant potential as a modular and efficient platform for synthesizing sulfur-containing amino acids and modifying peptides, particularly with abundant disulfides and styrenes.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsJiangsu Key Laboratory of New Power BatteriesSchool of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
5
|
Wang Y, Lin C, Zhang Z, Shen L, Zou B. Directed Nickel-Catalyzed Selective Arylhydroxylation of Unactivated Alkenes under Air. Org Lett 2023; 25:2172-2177. [PMID: 36946921 DOI: 10.1021/acs.orglett.3c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
An expeditious and novel nickel-catalyzed selective arylhydroxylation of unactivated alkenes with arylboronic acids was developed. This protocol is compatible with β,γ- and γ,δ-alkene amides, including traditionally challenging internal alkenes, to provide important β-arylethylalcohol scaffolds. The free hydroxyl group in the final product could be smoothly further transformed into other functional groups. Control experiments indicated that the oxygen atom of the hydroxyl group in the product is derived from the oxygen in the air.
Collapse
Affiliation(s)
- Yihua Wang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cong Lin
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Zongxu Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Liang Shen
- Jiangxi Engineering Laboratory of Waterborne Coatings, College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Boya Zou
- College of Chemistry and Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
6
|
Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Nickel-Catalyzed Enantioselective Reductive Alkyl-Carbamoylation of Internal Alkenes. Angew Chem Int Ed Engl 2022; 61:e202207536. [PMID: 35818326 PMCID: PMC9427719 DOI: 10.1002/anie.202207536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/16/2022]
Abstract
Herein, we leverage the Ni-catalyzed enantioselective reductive dicarbofunctionalization of internal alkenes with alkyl iodides to enable the synthesis of chiral pyrrolidinones bearing vicinal stereogenic centers. The application of newly developed 1-Nap Quinim is critical for formation of two contiguous stereocenters in high yield, enantioselectivity, and diastereoselectivity. This catalytic system also improves both the yield and enantioselectivity in the synthesis of α,α-dialkylated γ-lactams. Computational studies reveal that the enantiodetermining step proceeds with a carbamoyl-NiI intermediate that is reduced by the Mn reductant prior to intramolecular migratory insertion. The presence of the t-butyl group of the Quinim ligand leads to an unfavorable distortion of the substrate in the TS that leads to the minor enantiomer. Calculations also support an improvement in enantioselectivity with 1-Nap Quinim compared to p-tol Quinim.
Collapse
Affiliation(s)
- Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Baixue Luan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Feng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Wu X, Turlik A, Luan B, He F, Qu J, Houk KN, Chen Y. Nickel‐Catalyzed Enantioselective Reductive Alkyl‐Carbamoylation of Internal Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xianqing Wu
- East China University of Science and Technology school of chemistry and molecular engeering CHINA
| | - Aneta Turlik
- UCLA: University of California Los Angeles Department of Chemistry and Biochemistry UNITED STATES
| | - Baixue Luan
- East China University of Science and Technology school of chemistry and molecular engineering CHINA
| | - Feng He
- East China University of Science and Technology school of chemistry and molecular engeering CHINA
| | - Jingping Qu
- East China University of Science and Technology school of chemistry and molecular engineering CHINA
| | - Kendall N. Houk
- University of California, Los Angeles 607 Charles E Young Drive East 90095 Los Angeles UNITED STATES
| | - Yifeng Chen
- East China University of Science and Technology School of Chemistry and Molecular Engineering 130 Meilong Road 200237 Shanghai CHINA
| |
Collapse
|