1
|
Liang RB, Miao TT, Li XR, Huang JB, Ni SF, Li S, Tong QX, Zhong JJ. Modular assembly of amines and diborons with photocatalysis enabled halogen atom transfer of organohalides for C(sp 3)-C(sp 3) bond formation. Chem Sci 2025; 16:3580-3587. [PMID: 39867961 PMCID: PMC11758988 DOI: 10.1039/d5sc00190k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp3)-C(sp3) bond formation by using the assembly of DABCO A1 and B2Nep2B1. The strategy features operational simplicity, mild conditions and good functional group tolerance. A range of organohalides including activated alkyl chlorides, alkyl bromides (1°, 2° and 3° C-Br) as well as aromatic bromides are applicable in the strategy. Experimental and computational studies rationalize the proposed mechanism.
Collapse
Affiliation(s)
- Rong-Bin Liang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Ting-Ting Miao
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Xiang-Rui Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Jia-Bo Huang
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Shao-Fei Ni
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Sanliang Li
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515063 P. R. China
| |
Collapse
|
2
|
Gay BL, Prendeville LA, Wang YN, Hull KL. Base-Free Borylation of Aryl Halides Enabled by Zn-Promoted Halide Abstraction. Org Lett 2024; 26:10481-10486. [PMID: 39626024 DOI: 10.1021/acs.orglett.4c03821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Herein, we report the palladium-catalyzed borylation of aryl halides (iodides or bromides) under base-free conditions utilizing a commercially available Lewis acidic mediator, Zn(OTf)2. Under these conditions, an array of electronically and functional-group-diverse aryl iodides and bromides undergo borylation to afford the corresponding aryl boronic esters in ≤82% isolated yields. Mechanistic investigations are consistent with Zn(OTf)2 enabling transmetalation between a cationic Pd(II)-Ar intermediate and B2pin2 via halide abstraction. Furthermore, stabilization of the cationic [ArPdII]+ complex with added [BArF4]- significantly improves the reaction efficiency with electron-poor arenes.
Collapse
Affiliation(s)
- Brittany L Gay
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Lauren A Prendeville
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Ya-Nong Wang
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| | - Kami L Hull
- Department of Chemistry, The University of Texas at Austin, 100 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Werner L, Radius U. How to Decarbonize N-Heterocyclic Carbenes (NHCs): The simple Alane Adducts (NHC) ⋅ AlR 3 (R=H, Me, Et). Angew Chem Int Ed Engl 2024; 63:e202403639. [PMID: 38446008 DOI: 10.1002/anie.202403639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
The reaction of the amine-stabilized alane (NMe3) ⋅ AlH3 1 with the backbone-saturated N-heterocyclic carbene (NHC) SIDipp (SIDipp=1,3-bis-{2,6-di-iso-propyl-phenyl}-imidazolidin-2-ylidene) at 0 °C yielded the NHC alane adduct (SIDipp) ⋅ AlH3 2. Reaction at elevated temperatures or prolonged reaction at room temperature gave the product of a ring expansion reaction (RER) of the NHC, (NMe3) ⋅ AlH(RER-SIDippH2) 3 ⋅ (NMe3). Subsequent reaction of the latter with sterically less hindered NHCs (IMeMe {=1,3,4,5-tetramethyl-imidazolin-2-ylidene}, IiPrMe {=1,3-di-iso-propyl-4,5-dimethyl-imidazolin-2-ylidene}, and IiPr {=1,3-di-iso-propyl-imidazolin-2-ylidene}) afforded the NHC-stabilized RER-products (NHC) ⋅ AlH(RER-SIDippH2) 3 ⋅ (NHC) (NHC=IMeMe, IiPrMe, IiPr), while no reaction was observed with the sterically more demanding NHCs IDipp (=1,3-bis-{2,6-di-iso-propyl-phenyl}-imidazolin-2-ylidene), SIDipp and ItBu (=1,3-di-tert-butyl-imidazolin-2-ylidene). The compounds 3 ⋅ (NHC) were also obtained starting from (SIDipp) ⋅ AlH3 2 and NHC at room temperature. Heating solutions of (SIDipp) ⋅ AlH3 2 without additional base to 95 °C resulted in decarbonization of the NHC and substitution of the carbene carbon atom with aluminum hydride under loss of ethene. Subsequent dimerization afforded cis-[AlH{μ-N(Dipp)CH2CH2N(Dipp)}]2 4_dimer. Heating solutions of the NHC-ligated aluminum alkyls (SIDipp) ⋅ AlR3 2R (R=Me, Et) to 145 °C instead led to complete scission of the NHC backbone with evolution of ethene and isolation of the dialkylaluminium(III) amidinates {DippNC(R)NDipp}AlR2 5R (R=Me, Et).
Collapse
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Werner L, Hagn J, Radius U. NHC-Stabilized Dialanes(4) of Al 2 Mes 4. Chemistry 2023; 29:e202303111. [PMID: 37792718 DOI: 10.1002/chem.202303111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
The synthesis and characterization of novel N-heterocyclic carbene (NHC) stabilized dialanes Al2 Mes4 as well as first investigations concerning the reactivity of these compounds are reported. The synthesis of these compounds proceeds via the mesityl-substituted alanes (NHC)⋅AlHMes2 (NHC=IMeMe {=1,3,4,5-tetramethyl-imidazolin-2-ylidene}, IiPrMe {=1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene}) and iodo-alanes (NHC)⋅AlIMes2 (NHC=IMeMe , IiPrMe ). Metallic reduction of (NHC)⋅AlIMes2 afforded the new NHC-stabilized dialanes (NHC)2 ⋅Al2 Mes4 (NHC=IMeMe , IiPrMe ). The NHC-ligated dialanes are thermally robust and storable synthons for the dialane Al2 Mes4 . First reactivity studies on (IMeMe )2 ⋅Al2 Mes4 towards small molecules confirm this, as this compound shows controlled and selective reactions with several substrates. Reaction with CuCl leads to oxidation of the dialane and formation of (IMeMe )⋅AlClMes2 , reactions with pyridine N-oxide and t Bu-N=C=S, respectively, gave the chalcogenide-bridged dimers {(IMeMe )⋅AlMes2 }2 -μ-E (E=O, S), and reaction with acetylene afforded the dimetallaacetylide {(IMeMe )⋅AlMes2 }2 -μ-(C≡C).
Collapse
Affiliation(s)
- Luis Werner
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julika Hagn
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
5
|
Tendera L, Kuehn L, Marder TB, Radius U. On the Reactivity of a NHC Nickel Bis-Boryl Complex: Reductive Elimination and Formation of Mono-Boryl Complexes. Chemistry 2023; 29:e202302310. [PMID: 37551752 DOI: 10.1002/chem.202302310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The synthesis of the first terminal mono-boryl complexes of nickel, which are not stabilized by a pincer ligand, is reported. The reaction of the nickel bis-boryl complex cis-[Ni(i Pr2 ImMe )2 (Bcat)2 ] 1 (cat=1,2-O2 C6 H4 ) with the small donor ligand PMe3 led to a complete ligand exchange at nickel with reductive elimination of B2 cat2 and formation of the bis-NHC adduct [B2 cat2 ⋅ (i Pr2 ImMe )2 ] 3 and [Ni(PMe3 )4 ] 2 as the metal-containing species. Electrophilic attack of MeI on complex 1 or ligand dismutation of 1 with trans-[Ni(i Pr2 ImMe )2 Br2 ] led to loss of only one boryl ligand of 1 and afforded the nickel mono-boryl complexes trans-[Ni(i Pr2 ImMe )2 (Bcat)Br] 4 a and trans-[Ni(i Pr2 ImMe )2 (Bcat)I] 4 b.
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Laura Kuehn
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Hosoya H, Akiyama T, Mashima K, Tsurugi H. Bis(neopentylglycolato)diboron (B 2nep 2) as a bidentate ligand and a reducing agent for early transition metal chlorides giving MCl 4(B 2nep 2) complexes. Dalton Trans 2023; 52:13154-13160. [PMID: 37655795 DOI: 10.1039/d3dt01828h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We found that bis(neopentylglycolato)diboron (B2nep2) served as a bidentate ligand and a one-electron reducing agent for early transition metal chlorides to afford MCl4(B2nep2). Treatment of B2nep2 with MCl5 (M = Nb and Mo) produced MCl4(B2nep2) via two successive reactions, coordination of B2nep2 to the metal center and one-electron reduction from M(V) to M(IV), while coordination of B2nep2 to MCl4 (M = Zr, Ti) was observed without reduction of the central metals. DFT studies for the reduction of NbCl5 by B2nep2 clarified the initial formation of seven-coordinated and B2nep2-ligated Nb(V) species, NbCl5(B2nep2), and one chloride on niobium(V) moves to the Lewis acidic boron center to generate NbCl4[(B2nep2)Cl]. The chloride on the boron atom of NbCl4[(B2nep2)Cl] is trapped by the second B2nep2 to give [NbCl4(B2nep2)][ClB2nep2]. After the formation of [ClB2nep2]- as an anionic sp2-sp3 diboron adduct, one-electron reduction of the niobium(V) center produces NbCl4(B2nep2) along with [ClB2nep2]˙ as a plausible diboron species, whose decomposition affords ClBnep and B2nep2. The reduction of metal halides in the presence of B2nep2 was exemplified by green LED irradiation of TiCl4(B2nep2), producing chloride-bridged titanium(III) species, (B2nep2)TiCl2(μ-Cl)2TiCl2(B2nep2).
Collapse
Affiliation(s)
- Hiromu Hosoya
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Takuya Akiyama
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | - Kazushi Mashima
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
7
|
Nie Z, Cheng R, Qiu Z, Xie Z. Reaction of 4-Bpin-o-Carborane with Ketones: Sequential Carbon Vertex Alkylation and B-B Bond Activation. Chem Asian J 2023; 18:e202300598. [PMID: 37547963 DOI: 10.1002/asia.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Diboron compounds are important reagents in a series of transition metal catalyzed or metal-free borylation reactions. We describe herein a unique reactivity of 4-Bpin-o-carborane with ketones under basic conditions, leading to sequential cage carbon alkylation, B-B bond activation and unexpected O-migration. The reaction was compatible with a good substrate scope including dialkyl or alkyl aryl ketones. The reaction mechanism is also proposed, involving cage CH deprotonation, nucleophilic attack of ketone, and O-migration along with B-B bond cleavage.
Collapse
Affiliation(s)
- Zhen Nie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
| | - Ruofei Cheng
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
| | - Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai, 200032, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Ren H, Zhang P, Xu J, Ma W, Tu D, Lu CS, Yan H. Direct B-H Functionalization of Icosahedral Carboranes via Hydrogen Atom Transfer. J Am Chem Soc 2023; 145:7638-7647. [PMID: 36946888 DOI: 10.1021/jacs.3c01314] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The efficient and selective functionalization of icosahedral carboranes (C2B10H12) at the boron vertexes is a long-standing challenge owing to the presence of 10 inert B-H bonds in a similar chemical environment. Herein, we report a new reaction paradigm for direct B-H functionalization of icosahedral carboranes via B-H homolysis enabled by a nitrogen-centered radical-mediated hydrogen atom transfer (HAT) strategy. Both the HAT process of the carborane B-H bond and the resulting boron-centered carboranyl radical intermediate have been confirmed experimentally. The reaction occurs at the most electron-rich boron vertex with the lowest B-H bond dissociation energy (BDE). Using this strategy, diverse carborane derivatization, including thiolation, selenation, alkynylation, alkenylation, cyanation, and halogenation, have been achieved in satisfactory yields under a photoinitiated condition in a metal-free and redox-neutral fashion. Moreover, the synthetic utility of the current protocol was also demonstrated by both the scale-up reaction and the construction of carborane-based functional molecules. Therefore, this methodology opens a radical pathway to carborane functionalization, which is distinct from the B-H heterolytic mechanism in the traditional strategies.
Collapse
Affiliation(s)
- Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Lamola JL, Moshapo PT, Holzapfel CW, Makhubela BC, Christopher Maumela M. Efficient system for facile access to ortho-substituted aryl boronates through palladium-catalysed borylation. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Zapf L, Riethmann M, Föhrenbacher SA, Finze M, Radius U. An easy-to-perform evaluation of steric properties of Lewis acids. Chem Sci 2023; 14:2275-2288. [PMID: 36873848 PMCID: PMC9977453 DOI: 10.1039/d3sc00037k] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
Steric and electronic effects play a very important role in chemistry, as these effects influence the shape and reactivity of molecules. Herein, an easy-to-perform approach to assess and quantify steric properties of Lewis acids with differently substituted Lewis acidic centers is reported. This model applies the concept of the percent buried volume (%V Bur) to fluoride adducts of Lewis acids, as many fluoride adducts are crystallographically characterized and are frequently calculated to judge fluoride ion affinities (FIAs). Thus, data such as cartesian coordinates are often easily available. A list of 240 Lewis acids together with topographic steric maps and cartesian coordinates of an oriented molecule suitable for the SambVca 2.1 web application is provided, together with different FIA values taken from the literature. Diagrams of %V Bur as a scale for steric demand vs. FIA as a scale for Lewis acidity provide valuable information about stereo-electronic properties of Lewis acids and an excellent evaluation of steric and electronic features of the Lewis acid under consideration. Furthermore, a novel LAB-Rep model (Lewis acid/base repulsion model) is introduced, which judges steric repulsion in Lewis acid/base pairs and helps to predict if an arbitrary pair of Lewis acid and Lewis base can form an adduct with respect to their steric properties. The reliability of this model was evaluated in four selected case studies, which demonstrate the versatility of this model. For this purpose, a user-friendly Excel spreadsheet was developed and is provided in the ESI, which works with listed buried volumes of Lewis acids %V Bur_LA and of Lewis bases %V Bur_LB, and no results from experimental crystal structures or quantum chemical calculations are necessary to evaluate steric repulsion in these Lewis acid/base pairs.
Collapse
Affiliation(s)
- Ludwig Zapf
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group.,Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Melanie Riethmann
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group.,Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Steffen A Föhrenbacher
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group
| | - Maik Finze
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group.,Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Udo Radius
- Institute of Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany https://www.ak-radius.de https://go.uniwue.de/finze-group
| |
Collapse
|
11
|
Tendera L, Fantuzzi F, Marder TB, Radius U. Nickel boryl complexes and nickel-catalyzed alkyne borylation. Chem Sci 2023; 14:2215-2228. [PMID: 36845942 PMCID: PMC9945561 DOI: 10.1039/d2sc04690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
The first nickel bis-boryl complexes cis-[Ni( i Pr2ImMe)2(Bcat)2], cis-[Ni( i Pr2ImMe)2(Bpin)2] and cis-[Ni( i Pr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni( i Pr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 ( i Pr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent of the bonding situation of "non-classical" H2 complexes. [Ni( i Pr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2-borylation product in excellent yields, but also provides an efficient approach to other products such as C-C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni( i Pr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C[double bond, length as m-dash]C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(Me)C[double bond, length as m-dash]C(Me)(Bcat))] and [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(H7C3)C[double bond, length as m-dash]C(C3H7)(Bcat))].
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of KentPark Wood RdCanterburyCT2 7NHUK
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
12
|
Wang Z, Chen J, Lin Z, Quan Y. Photoinduced Dehydrogenative Borylation via Dihydrogen Bond Bridged Electron Donor and Acceptor Complexes. Chemistry 2023; 29:e202203053. [PMID: 36396602 DOI: 10.1002/chem.202203053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Air-stable amine- and phosphine-boranes are discovered as donors to integrate with pyridinium acceptor for generating photoactive electron-donor-acceptor (EDA) complexes. Experimental results and DFT calculations suggest a dihydrogen bond bridging the donor and acceptor. Irradiating the EDA complex enables an intra-complex single electron transfer to give a boron-centered radical for dehydrogenative borylation with no need of external photosensitizer and radical initiator. The deprotonation of Wheland-like radical intermediate rather than its generation is believed to determine the good ortho-selectivity based on DFT calculations. A variety of α-borylated pyridine derivatives have been readily synthesized with good functional group tolerance.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| | - Yangjian Quan
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Metal-Free One-Pot Multi-Functionalization of Unsaturated Compounds with Interelement Compounds by Radical Process. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020787. [PMID: 36677845 PMCID: PMC9861539 DOI: 10.3390/molecules28020787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
In recent years, the importance of "environmentally friendly manufacturing" has been increasing toward the establishment of a resource-recycling society. In organic synthesis, as well, it is becoming increasingly important to develop new synthetic strategies with resource conservation and the recycling of elemental resources in mind, rather than just only synthesis. Many studies on the construction of frameworks of functional molecules using ionic reactions and transition-metal-catalyzed reactions have been reported, but most of them have focused on the formation of carbon-carbon bonds. However, it is essential to introduce appropriate functional groups at appropriate positions in molecules in order for the molecules to express their functions, and furthermore, the highly selective preparation of multiple functional groups is considered important for the creation of new functional molecules. In this review, we focus on radical reactions with high functional group selectivity and overview the recent progress in practical methods for the simultaneous introduction of multiple functional groups and propose future synthetic strategies that emphasize the recycling of elemental resources and environmental friendliness.
Collapse
|
14
|
Chen D, Xu L, Yu Y, Mo Q, Qi X, Liu C. Triflylpyridinium Enables Rapid and Scalable Controlled Reduction of Carboxylic Acids to Aldehydes using Pinacolborane. Angew Chem Int Ed Engl 2023; 62:e202215168. [PMID: 36378536 DOI: 10.1002/anie.202215168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Building up new and efficient methods for the controlled conversion of carboxylic acids to aldehydes is important. Herein, we report a rapid, modular and scalable method for the conversion of carboxylic acids to aldehydes using pinacolborane at ambient temperature, in which a triflylpyridinium reagent is used. The conversion of carboxylic acid to intermediate acylpyridinium by triflylpyridinium is new. A binary pyridine-coordinated boronium complex is generated after reduction. The unprecedented reduction of the acylpyridinium by HBpin opens up a practically direct synthesis of aldehydes from carboxylic acids. Theoretical studies indicate that the reduction of acylpyridinium requires a lower activation free energy than that of the product aldehyde. The synthetic advantage of this protocol is further highlighted by the scalable synthesis of aldehyde via continuous flow process. Configuration retention for chiral acids are presented in those syntheses.
Collapse
Affiliation(s)
- Du Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangxuan Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qinliang Mo
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
15
|
Liu TT, Chen J, Chen XL, Ma L, Guan BT, Lin Z, Shi ZJ. Neutral Boryl Radicals in Mixed-Valent B (III) Br-B (II) Adducts. Chemistry 2023; 29:e202202634. [PMID: 36217568 DOI: 10.1002/chem.202202634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/06/2022]
Abstract
The general strategies to stabilize a boryl radical involve single electron delocalization by π-system and the steric hinderance from bulky groups. Herein, a new class of boryl radicals is reported, with intramolecular mixed-valent B(III) Br-B(II) adducts ligated by a cyclic (alkyl)(amino)carbene (CAAC). The radicals feature a large spin density on the boron center, which is ascertained by EPR spectroscopy and DFT calculations. Structural and computational analyses revealed that the stability of radical species was assisted by the CAAC ligand and a weak but significant B(III)Br-B(II) interaction, suggesting a cooperative avenue for stabilization of boryl radicals. Two-electron reduction of these new boryl radicals provides C-H insertion products via a borylene intermediate.
Collapse
Affiliation(s)
- Tong-Tong Liu
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaxin Chen
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Xin-Lei Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Li Ma
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhang-Jie Shi
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|