1
|
Xia J, Zhang Y, Jiang B. The evolution of machine learning potentials for molecules, reactions and materials. Chem Soc Rev 2025. [PMID: 40227021 DOI: 10.1039/d5cs00104h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Recent years have witnessed the fast development of machine learning potentials (MLPs) and their widespread applications in chemistry, physics, and material science. By fitting discrete ab initio data faithfully to continuous and symmetry-preserving mathematical forms, MLPs have enabled accurate and efficient atomistic simulations in a large scale from first principles. In this review, we provide an overview of the evolution of MLPs in the past two decades and focus on the state-of-the-art MLPs proposed in the last a few years for molecules, reactions, and materials. We discuss some representative applications of MLPs and the trend of developing universal potentials across a variety of systems. Finally, we outline a list of open challenges and opportunities in the development and applications of MLPs.
Collapse
Affiliation(s)
- Junfan Xia
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
- School of Chemistry and Materials Science, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yaolong Zhang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Bin Jiang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
- School of Chemistry and Materials Science, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
2
|
Eberhart ME, Alexandrova AN, Ajmera P, Bím D, Chaturvedi SS, Vargas S, Wilson TR. Methods for Theoretical Treatment of Local Fields in Proteins and Enzymes. Chem Rev 2025; 125:3772-3813. [PMID: 39993955 DOI: 10.1021/acs.chemrev.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Electric fields generated by protein scaffolds are crucial in enzymatic catalysis. This review surveys theoretical approaches for detecting, analyzing, and comparing electric fields, electrostatic potentials, and their effects on the charge density within enzyme active sites. Pioneering methods like the empirical valence bond approach rely on evaluating ionic and covalent resonance forms influenced by the field. Strategies employing polarizable force fields also facilitate field detection. The vibrational Stark effect connects computational simulations to experimental Stark spectroscopy, enabling direct comparisons. We highlight how protein dynamics induce fluctuations in local fields, influencing enzyme activity. Recent techniques assess electric fields throughout the active site volume rather than only at specific bonds, and machine learning helps relate these global fields to reactivity. Quantum theory of atoms in molecules captures the entire electron density landscape, providing a chemically intuitive perspective on field-driven catalysis. Overall, these methodologies show protein-generated fields are highly dynamic and heterogeneous, and understanding both aspects is critical for elucidating enzyme mechanisms. This holistic view empowers rational enzyme engineering by tuning electric fields, promising new avenues in drug design, biocatalysis, and industrial applications. Future directions include incorporating electric fields as explicit design targets to enhance catalytic performance and biochemical functionalities.
Collapse
Affiliation(s)
- Mark E Eberhart
- Chemistry Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | - Anastassia N Alexandrova
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Pujan Ajmera
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel Bím
- Department of Physical Chemistry, University of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Shobhit S Chaturvedi
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Santiago Vargas
- Department of Chemistry, and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy R Wilson
- Chemistry Department, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Pastel GR, Pollard TP, Borodin O, Schroeder MA. From Ab Initio to Instrumentation: A Field Guide to Characterizing Multivalent Liquid Electrolytes. Chem Rev 2025; 125:3059-3164. [PMID: 40063379 DOI: 10.1021/acs.chemrev.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
In this field guide, we outline empirical and theory-based approaches to characterize the fundamental properties of liquid multivalent-ion battery electrolytes, including (i) structure and chemistry, (ii) transport, and (iii) electrochemical properties. When detailed molecular-scale understanding of the multivalent electrolyte behavior is insufficient we use examples from well-studied lithium-ion electrolytes. In recognition that coupling empirical and theory-based techniques is highly effective, but often nontrivial, we also highlight recent electrolyte characterization efforts that uncover a more comprehensive and nuanced understanding of the underlying structures, processes, and reactions that drive performance and system-level behavior. We hope the insights from these discussions will guide the design of future electrolyte studies, accelerate development of next-generation multivalent-ion batteries through coupling of modeling with experiments, and help to avoid pitfalls and ensure reproducibility of modeling results.
Collapse
Affiliation(s)
- Glenn R Pastel
- Battery Science Branch, Energy Sciences Division, DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Travis P Pollard
- Battery Science Branch, Energy Sciences Division, DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Oleg Borodin
- Battery Science Branch, Energy Sciences Division, DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Marshall A Schroeder
- Battery Science Branch, Energy Sciences Division, DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, United States
| |
Collapse
|
4
|
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025; 27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The molecular force field (FF) determines the accuracy of molecular dynamics (MD) and is one of the major bottlenecks that limits the application of MD in molecular design. Recently, artificial intelligence (AI) techniques, such as machine-learning potentials (MLPs), have been rapidly reshaping the landscape of MD. Meanwhile, organic molecular systems feature unique characteristics, and require more careful treatment in both model construction, optimization, and validation. While an accurate and generic organic molecular force field is still missing, significant progress has been made with the facilitation of AI, warranting a promising future. In this review, we provide an overview of the various types of AI techniques used in molecular FF development and discuss both the advantages and weaknesses of these methodologies. We show how AI methods provide unprecedented capabilities in many tasks such as potential fitting, atom typification, and automatic optimization. Meanwhile, it is also worth noting that more efforts are needed to improve the transferability of the model, develop a more comprehensive database, and establish more standardized validation procedures. With these discussions, we hope to inspire more efforts to solve the existing problems, eventually leading to the birth of next-generation generic organic FFs.
Collapse
Affiliation(s)
- Junmin Chen
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Qian Gao
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Miaofei Huang
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kuang Yu
- Institute of Materials Research (IMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Zinovjev K, Curutchet C. Improved Description of Environment and Vibronic Effects with Electrostatically Embedded ML Potentials. J Phys Chem Lett 2025; 16:774-781. [PMID: 39804789 DOI: 10.1021/acs.jpclett.4c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Incorporation of environment and vibronic effects in simulations of optical spectra and excited state dynamics is commonly done by combining molecular dynamics with excited state calculations, which allows to estimate the spectral density describing the frequency-dependent system-bath coupling strength. The need for efficient sampling, however, usually leads to the adoption of classical force fields despite well-known inaccuracies due to the mismatch with the excited state method. Here, we present a multiscale strategy that overcomes this limitation by combining EMLE simulations based on electrostatically embedded ML potentials with the QM/MMPol polarizable embedding model to compute the excited states and spectral density of 3-methyl-indole, the chromophoric moiety of tryptophan that mediates a variety of important biological functions, in the gas phase, in water solution, and in the human serum albumin protein. Our protocol provides highly accurate results that faithfully reproduce their ab initio QM/MM counterparts, thus paving the way for accurate investigations on the interrelation between the time scales of biological motion and the photophysics of tryptophan and other biosystems.
Collapse
Affiliation(s)
- Kirill Zinovjev
- Departamento de Química Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Carles Curutchet
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
6
|
Haghiri S, Viquez Rojas C, Bhat S, Isayev O, Slipchenko L. ANI/EFP: Modeling Long-Range Interactions in ANI Neural Network with Effective Fragment Potentials. J Chem Theory Comput 2024; 20:9138-9147. [PMID: 39352841 DOI: 10.1021/acs.jctc.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Deep learning Neural Networks (NN) have been developed in the field of molecular modeling for the purpose of circumventing the high computational cost of quantum-mechanical calculations while rivaling their accuracies. Although these networks have found great success, they generally lack the ability to accurately describe long-range interactions, which makes them unusable for extended molecular systems. Herein, we provide a method for partially retraining the deep learning general-use neural network ANI, in which the long-range interactions are represented via atomic electrostatic potentials. The electrostatic potentials, generated with polarizable effective fragment potentials (EFP), are used as an additional input feature for the network. This new ANI/EFP network can predict solute-solvent interaction energies on a trained data set with a kcal/mol accuracy. It also shows promise in predicting the interaction energies of a solute in solvent environments that have not been included in a training data set. The proposed protocol can be taken as an example and further developed, leading to highly accurate and transferable neural network potentials capable of handling long-range interactions and extended molecular systems.
Collapse
Affiliation(s)
- Shahed Haghiri
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Claudia Viquez Rojas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Sriram Bhat
- Department of Computer Science, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
7
|
Plé T, Adjoua O, Lagardère L, Piquemal JP. FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials. J Chem Phys 2024; 161:042502. [PMID: 39051830 DOI: 10.1063/5.0217688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Neural network interatomic potentials (NNPs) have recently proven to be powerful tools to accurately model complex molecular systems while bypassing the high numerical cost of ab initio molecular dynamics simulations. In recent years, numerous advances in model architectures as well as the development of hybrid models combining machine-learning (ML) with more traditional, physically motivated, force-field interactions have considerably increased the design space of ML potentials. In this paper, we present FeNNol, a new library for building, training, and running force-field-enhanced neural network potentials. It provides a flexible and modular system for building hybrid models, allowing us to easily combine state-of-the-art embeddings with ML-parameterized physical interaction terms without the need for explicit programming. Furthermore, FeNNol leverages the automatic differentiation and just-in-time compilation features of the Jax Python library to enable fast evaluation of NNPs, shrinking the performance gap between ML potentials and standard force-fields. This is demonstrated with the popular ANI-2x model reaching simulation speeds nearly on par with the AMOEBA polarizable force-field on commodity GPUs (graphics processing units). We hope that FeNNol will facilitate the development and application of new hybrid NNP architectures for a wide range of molecular simulation problems.
Collapse
Affiliation(s)
- Thomas Plé
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | - Olivier Adjoua
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | - Louis Lagardère
- Sorbonne Université, LCT, UMR 7616 CNRS, 75005 Paris, France
| | | |
Collapse
|
8
|
Chen G, Jaffrelot Inizan T, Plé T, Lagardère L, Piquemal JP, Maday Y. Advancing Force Fields Parameterization: A Directed Graph Attention Networks Approach. J Chem Theory Comput 2024; 20:5558-5569. [PMID: 38875012 DOI: 10.1021/acs.jctc.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Force fields (FFs) are an established tool for simulating large and complex molecular systems. However, parametrizing FFs is a challenging and time-consuming task that relies on empirical heuristics, experimental data, and computational data. Recent efforts aim to automate the assignment of FF parameters using pre-existing databases and on-the-fly ab initio data. In this study, we propose a graph-based force field (GB-FFs) model to directly derive parameters for the Generalized Amber Force Field (GAFF) from chemical environments and research into the influence of functional forms. Our end-to-end parametrization approach predicts parameters by aggregating the basic information in directed molecular graphs, eliminating the need for expert-defined procedures and enhances the accuracy and transferability of GAFF across a broader range of molecular complexes. Simulation results are compared to the original GAFF parametrization. In practice, our results demonstrate an improved transferability of the model, showcasing its improved accuracy in modeling intermolecular and torsional interactions, as well as improved solvation free energies. The optimization approach developed in this work is fully applicable to other nonpolarizable FFs as well as to polarizable ones.
Collapse
Affiliation(s)
- Gong Chen
- Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), UMR 7598 CNRS, 75005 Paris, France
| | - Théo Jaffrelot Inizan
- Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France
| | - Thomas Plé
- Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France
| | - Louis Lagardère
- Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique (LCT), UMR 7616 CNRS, 75005 Paris, France
| | - Yvon Maday
- Sorbonne Université, CNRS, Université Paris Cité, Laboratoire Jacques-Louis Lions (LJLL), UMR 7598 CNRS, 75005 Paris, France
| |
Collapse
|
9
|
Lagardère L, Maurin L, Adjoua O, El Hage K, Monmarché P, Piquemal JP, Hénin J. Lambda-ABF: Simplified, Portable, Accurate, and Cost-Effective Alchemical Free-Energy Computation. J Chem Theory Comput 2024; 20:4481-4498. [PMID: 38805379 DOI: 10.1021/acs.jctc.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We introduce the lambda-Adaptive Biasing Force (lambda-ABF) method for the computation of alchemical free-energy differences. We propose a software implementation and showcase it on biomolecular systems. The method arises from coupling multiple-walker adaptive biasing force with λ-dynamics. The sampling of the alchemical variable is continuous and converges toward a uniform distribution, making manual optimization of the λ schedule unnecessary. Contrary to most other approaches, alchemical free-energy estimates are obtained immediately without any postprocessing. Free diffusion of λ improves orthogonal relaxation compared to fixed-λ thermodynamic integration or free-energy perturbation. Furthermore, multiple walkers provide generic orthogonal space coverage with minimal user input and negligible computational overhead. We show that our high-performance implementations coupling the Colvars library with NAMD and Tinker-HP can address real-world cases including ligand-receptor binding with both fixed-charge and polarizable models, with a demonstrably richer sampling than fixed-λ methods. The implementation is fully open-source, publicly available, and readily usable by practitioners of current alchemical methods. Thanks to the portable Colvars library, lambda-ABF presents a unified user interface regardless of the back-end (NAMD, Tinker-HP, or any software to be interfaced in the future), sparing users the effort of learning multiple interfaces. Finally, the Colvars Dashboard extension of the visual molecular dynamics (VMD) software provides an interactive monitoring and diagnostic tool for lambda-ABF simulations.
Collapse
Affiliation(s)
- Louis Lagardère
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Sorbonne Université, Institut Parisien de Chimie Physique et Théorique, FR2622 CNRS, 75005 Paris, France
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Lise Maurin
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, 75005 Paris, France
| | - Olivier Adjoua
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
| | - Krystel El Hage
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Pierre Monmarché
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Sorbonne Université, Laboratoire Jacques-Louis Lions, UMR 7589 CNRS, 75005 Paris, France
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
- Qubit Pharmaceuticals, 29 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique, Université Paris Cité, CNRS, UPR 9080, 75005 Paris, France
| |
Collapse
|
10
|
Wang Y, Inizan TJ, Liu C, Piquemal JP, Ren P. Incorporating Neural Networks into the AMOEBA Polarizable Force Field. J Phys Chem B 2024; 128:2381-2388. [PMID: 38445577 PMCID: PMC10985787 DOI: 10.1021/acs.jpcb.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Neural network potentials (NNPs) offer significant promise to bridge the gap between the accuracy of quantum mechanics and the efficiency of molecular mechanics in molecular simulation. Most NNPs rely on the locality assumption that ensures the model's transferability and scalability and thus lack the treatment of long-range interactions, which are essential for molecular systems in the condensed phase. Here we present an integrated hybrid model, AMOEBA+NN, which combines the AMOEBA potential for the short- and long-range noncovalent atomic interactions and an NNP to capture the remaining local covalent contributions. The AMOEBA+NN model was trained on the conformational energy of the ANI-1x data set and tested on several external data sets ranging from small molecules to tetrapeptides. The hybrid model demonstrated substantial improvements over the baseline models in term of accuracy as the molecule size increased, suggesting its potential as a next-generation approach for chemically accurate molecular simulations.
Collapse
Affiliation(s)
- Yanxing Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Théo Jaffrelot Inizan
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jean-Philip Piquemal
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, Paris 75005, France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Célerse F, Wodrich MD, Vela S, Gallarati S, Fabregat R, Juraskova V, Corminboeuf C. From Organic Fragments to Photoswitchable Catalysts: The OFF-ON Structural Repository for Transferable Kernel-Based Potentials. J Chem Inf Model 2024; 64:1201-1212. [PMID: 38319296 PMCID: PMC10900300 DOI: 10.1021/acs.jcim.3c01953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Structurally and conformationally diverse databases are needed to train accurate neural networks or kernel-based potentials capable of exploring the complex free energy landscape of flexible functional organic molecules. Curating such databases for species beyond "simple" drug-like compounds or molecules composed of well-defined building blocks (e.g., peptides) is challenging as it requires thorough chemical space mapping and evaluation of both chemical and conformational diversities. Here, we introduce the OFF-ON (organic fragments from organocatalysts that are non-modular) database, a repository of 7869 equilibrium and 67,457 nonequilibrium geometries of organic compounds and dimers aimed at describing conformationally flexible functional organic molecules, with an emphasis on photoswitchable organocatalysts. The relevance of this database is then demonstrated by training a local kernel regression model on a low-cost semiempirical baseline and comparing it with a PBE0-D3 reference for several known catalysts, notably the free energy surfaces of exemplary photoswitchable organocatalysts. Our results demonstrate that the OFF-ON data set offers reliable predictions for simulating the conformational behavior of virtually any (photoswitchable) organocatalyst or organic compound composed of H, C, N, O, F, and S atoms, thereby opening a computationally feasible route to explore complex free energy surfaces in order to rationalize and predict catalytic behavior.
Collapse
Affiliation(s)
- Frédéric Célerse
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Matthew D. Wodrich
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sergi Vela
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Simone Gallarati
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Raimon Fabregat
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Veronika Juraskova
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Clémence Corminboeuf
- Laboratory
for Computational Molecular Design (LCMD), Institute of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne 1015, Switzerland
- National
Center for Competence in Research-Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Ding Y, Huang J. DP/MM: A Hybrid Model for Zinc-Protein Interactions in Molecular Dynamics. J Phys Chem Lett 2024; 15:616-627. [PMID: 38198685 DOI: 10.1021/acs.jpclett.3c03158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Zinc-containing proteins are vital for many biological processes, yet accurately modeling them using classical force fields is hindered by complicated polarization and charge transfer effects. This study introduces DP/MM, a hybrid force field scheme that utilizes a deep potential model to correct the atomic forces of zinc ions and their coordinated atoms, elevating them from MM to QM levels of accuracy. Trained on the difference between MM and QM atomic forces across diverse zinc coordination groups, the DP/MM model faithfully reproduces structural characteristics of zinc coordination during simulations, such as the tetrahedral coordination of Cys4 and Cys3His1 groups. Furthermore, DP/MM allows water exchange in the zinc coordination environment. With its unique blend of accuracy, efficiency, flexibility, and transferability, DP/MM serves as a valuable tool for studying structures and dynamics of zinc-containing proteins and also represents a pioneering approach in the evolving landscape of machine learning potentials for molecular modeling.
Collapse
Affiliation(s)
- Ye Ding
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Jing Huang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
- Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
13
|
Plé T, Lagardère L, Piquemal JP. Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects. Chem Sci 2023; 14:12554-12569. [PMID: 38020379 PMCID: PMC10646944 DOI: 10.1039/d3sc02581k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
We introduce FENNIX (Force-Field-Enhanced Neural Network InteraXions), a hybrid approach between machine-learning and force-fields. We leverage state-of-the-art equivariant neural networks to predict local energy contributions and multiple atom-in-molecule properties that are then used as geometry-dependent parameters for physically-motivated energy terms which account for long-range electrostatics and dispersion. Using high-accuracy ab initio data (small organic molecules/dimers), we trained a first version of the model. Exhibiting accurate gas-phase energy predictions, FENNIX is transferable to the condensed phase. It is able to produce stable Molecular Dynamics simulations, including nuclear quantum effects, for water predicting accurate liquid properties. The extrapolating power of the hybrid physically-driven machine learning FENNIX approach is exemplified by computing: (i) the solvated alanine dipeptide free energy landscape; (ii) the reactive dissociation of small molecules.
Collapse
Affiliation(s)
- Thomas Plé
- Sorbonne Université, LCT, UMR 7616 CNRS F-75005 Paris France thomas.ple@sorbonne-université louis.lagardere@sorbonne-université jean-philip.piquemal@sorbonne-université
| | - Louis Lagardère
- Sorbonne Université, LCT, UMR 7616 CNRS F-75005 Paris France thomas.ple@sorbonne-université louis.lagardere@sorbonne-université jean-philip.piquemal@sorbonne-université
| | - Jean-Philip Piquemal
- Sorbonne Université, LCT, UMR 7616 CNRS F-75005 Paris France thomas.ple@sorbonne-université louis.lagardere@sorbonne-université jean-philip.piquemal@sorbonne-université
| |
Collapse
|
14
|
Illarionov A, Sakipov S, Pereyaslavets L, Kurnikov IV, Kamath G, Butin O, Voronina E, Ivahnenko I, Leontyev I, Nawrocki G, Darkhovskiy M, Olevanov M, Cherniavskyi YK, Lock C, Greenslade S, Sankaranarayanan SKRS, Kurnikova MG, Potoff J, Kornberg RD, Levitt M, Fain B. Combining Force Fields and Neural Networks for an Accurate Representation of Chemically Diverse Molecular Interactions. J Am Chem Soc 2023; 145:23620-23629. [PMID: 37856313 PMCID: PMC10623557 DOI: 10.1021/jacs.3c07628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Indexed: 10/21/2023]
Abstract
A key goal of molecular modeling is the accurate reproduction of the true quantum mechanical potential energy of arbitrary molecular ensembles with a tractable classical approximation. The challenges are that analytical expressions found in general purpose force fields struggle to faithfully represent the intermolecular quantum potential energy surface at close distances and in strong interaction regimes; that the more accurate neural network approximations do not capture crucial physics concepts, e.g., nonadditive inductive contributions and application of electric fields; and that the ultra-accurate narrowly targeted models have difficulty generalizing to the entire chemical space. We therefore designed a hybrid wide-coverage intermolecular interaction model consisting of an analytically polarizable force field combined with a short-range neural network correction for the total intermolecular interaction energy. Here, we describe the methodology and apply the model to accurately determine the properties of water, the free energy of solvation of neutral and charged molecules, and the binding free energy of ligands to proteins. The correction is subtyped for distinct chemical species to match the underlying force field, to segment and reduce the amount of quantum training data, and to increase accuracy and computational speed. For the systems considered, the hybrid ab initio parametrized Hamiltonian reproduces the two-body dimer quantum mechanics (QM) energies to within 0.03 kcal/mol and the nonadditive many-molecule contributions to within 2%. Simulations of molecular systems using this interaction model run at speeds of several nanoseconds per day.
Collapse
Affiliation(s)
- Alexey Illarionov
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Serzhan Sakipov
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Leonid Pereyaslavets
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor V. Kurnikov
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ganesh Kamath
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Oleg Butin
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Ekaterina Voronina
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Lomonosov
MSU, Skobeltsyn Institute of Nuclear Physics, Moscow, 119991, Russia
| | - Ilya Ivahnenko
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Igor Leontyev
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Grzegorz Nawrocki
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Mikhail Darkhovskiy
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Michael Olevanov
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Lomonosov
MSU, Dept. of Physics, Moscow, 119991, Russia
| | - Yevhen K. Cherniavskyi
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Christopher Lock
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
- Department
of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California 94304, United States
| | - Sean Greenslade
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| | - Subramanian KRS Sankaranarayanan
- Center
for Nanoscale Materials, Argonne National
Lab, Argonne, Illinois 604391, United States
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
| | - Maria G. Kurnikova
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jeffrey Potoff
- Department
of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Roger D. Kornberg
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94304, United States
| | - Michael Levitt
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94304, United States
| | - Boris Fain
- InterX
Inc. (a Subsidiary of NeoTX Therapeutics Ltd.), 805 Allston Way, Berkeley, California 94710, United States
| |
Collapse
|
15
|
Lanjan A, Moradi Z, Srinivasan S. Computational Framework Combining Quantum Mechanics, Molecular Dynamics, and Deep Neural Networks to Evaluate the Intrinsic Properties of Materials. J Phys Chem A 2023; 127:6603-6613. [PMID: 37497552 DOI: 10.1021/acs.jpca.3c02887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The design and evaluation of future nanomaterials with specific properties is a challenging task as the current traditional methods rely on trial and error approaches that are time-consuming and expensive. On the computational front, design tools such as molecular dynamics (MD) simulations help us reduce the costs and times. However, nonbonded potential parameters, the key input parameters for an MD simulation, are usually not available for designing and studying new materials. Resolving this, quantum mechanics (QM) calculations could be used to evaluate the system's energy as a function of the nonbonded distances, and the resulting data set could be fit to a generic potential equation to obtain the fitting constants (potential parameters). However, fitting this massive data set containing thousands of unknown parameters using traditional mathematical formulations is not feasible. Hence, most computational frameworks in the literature utilize several simplifications, leading to a severe loss of accuracy. Addressing this deficiency, in this work, we propose a multi-scale framework that couples QM calculations and MD with advanced deep neural networks to determine the potential parameters. This advanced framework has been extensively validated by employing it to predict properties such as the density, boiling point, and melting point of five different types of molecules that are well-understood, namely, the polar molecule H2O, ionic compound LiPF6, ethanol (C2H5OH), long-chain molecule C8H18, and the complex molecular system ethylene carbonate (EC).
Collapse
Affiliation(s)
- Amirmasoud Lanjan
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Zahra Moradi
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Seshasai Srinivasan
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|