1
|
Tomohara K, Kusaba S, Masui M, Uchida T, Nambu H, Nose T. Ammonium carboxylates in the ammonia-Ugi reaction: one-pot synthesis of α,α-disubstituted amino acid derivatives including unnatural dipeptides. Org Biomol Chem 2024; 22:6999-7005. [PMID: 39118586 DOI: 10.1039/d4ob00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Despite the remarkable developments of the Ugi reaction and its variants, the use of ammonia in the Ugi reaction has long been recognized as impractical and unsuccessful. Indeed, the ammonia-Ugi reaction often requires harsh reaction conditions, such as heating and microwave irradiation, and competes with the Passerini reaction, thereby resulting in low yields. This study describes a robust and practical ammonia-Ugi reaction protocol. Using originally prepared ammonium carboxylates in trifluoroethanol, the ammonia-Ugi reaction proceeded at room temperature in high yields and showed a broad substrate scope, thus synthesizing a variety of α,α-disubstituted amino acid derivatives, including unnatural dipeptides. The reaction required no condensing agents and proceeded without racemization of the chiral stereocenter of α-amino acids. Furthermore, using this protocol, we quickly synthesized a novel dipeptide, D-Leu-Aic-NH-CH2Ph(p-F), which exhibited a potent inhibitory activity against α-chymotrypsin with a Ki value of 0.091 μM.
Collapse
Affiliation(s)
- Keisuke Tomohara
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Satoru Kusaba
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Mana Masui
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Tatsuya Uchida
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hisanori Nambu
- Faculty and Graduate School of Pharmaceutical Science, Kyoto Pharmaceutical University, 1 Misasagishichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takeru Nose
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Gou X, Zhao HY, Huang Z, Yang Y, Jin LY. Donor-Acceptor Assembly of Amphiphilic Molecules Based on 9,10-Distyrylanthracene Derivatives with Terminal Naphthalene Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7106-7113. [PMID: 38498422 DOI: 10.1021/acs.langmuir.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Amphiphilic rod-coil compounds have excellent photophysical properties and can be assembled into supramolecular nanostructures of different sizes in water or polar solvents. Herein, we synthesized the amphiphilic compounds 2N-DSA, 4N-DSA, and 6N-DSA with 9,10-distyrylanthracene (DSA) as the core and a naphthalene unit as the terminal group that connected DSA through a tetraethylene glycol chain. These compounds have excellent aggregation-induced emission (AIE) properties in aqueous solution and are assembled into worm-like fragments or different sizes of spherical assemblies, defending the volume ratio of the rod to coil segments. Notably, the donor-acceptor interaction between DSA and electron- deficient compounds 2,4,6-trinitrophenol (TNP), 2,4,5,7-tetranitrofluorenone (TNF), and tetraethylene glycol dinitrobenzoate (TGDNB) forms a charge transfer complex, which can be used as a nanoreactor to improve the yield of the Suzuki coupling reaction about 8-10 times. The experimental results reveal that the synergy effect of the donor-acceptor, intermolecular π-π stacking, and hydrophobic-hydrophilic interactions significantly influences the morphology of aggregates and the efficiency of the nanoreactor.
Collapse
Affiliation(s)
- Xiaoliang Gou
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
| | - Hui-Yu Zhao
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhegang Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuntian Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Yuan R, He X, Zhu C, Tao L. Recent Developments in Functional Polymers via the Kabachnik-Fields Reaction: The State of the Art. Molecules 2024; 29:727. [PMID: 38338468 PMCID: PMC10856324 DOI: 10.3390/molecules29030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Recently, multicomponent reactions (MCRs) have attracted much attention in polymer synthesis. As one of the most well-known MCRs, the Kabachnik-Fields (KF) reaction has been widely used in the development of new functional polymers. The KF reaction can efficiently introduce functional groups into polymer structures; thus, polymers prepared via the KF reaction have unique α-aminophosphonates and show important bioactivity, metal chelating abilities, and flame-retardant properties. In this mini-review, we mainly summarize the latest advances in the KF reaction to synthesize functional polymers for the preparation of heavy metal adsorbents, multifunctional hydrogels, flame retardants, and bioimaging probes. We also discuss some emerging applications of functional polymers prepared by means of the KF reaction. Finally, we put forward our perspectives on the further development of the KF reaction in polymer chemistry.
Collapse
Affiliation(s)
- Rui Yuan
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Xianzhe He
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| | - Chongyu Zhu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China;
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; (R.Y.); (X.H.)
| |
Collapse
|
4
|
Wang M, Wang WX. Selective ingestion and response by Daphnia magna to environmental challenges of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131864. [PMID: 37331056 DOI: 10.1016/j.jhazmat.2023.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Our current understandings of the effects of microplastics and nanoplastics (MNPs) on aquatic animals are predominantly based on the single types of plastic particles. In the present study, we employed the highly fluorescent MNPs that incorporated aggregation-induced emission fluorogens and investigated the selective ingestion and response of Daphnia exposed to different types of plastics at environmentally relevant concentrations simultaneously. When daphnids were exposed to a single MNP, D. magna ingested them instantly in significant amounts. However, even low concentrations of algae had a significant negative impact on the MNP uptake. Specifically, algae caused the MPs to pass through the gut faster, reduced acidification and esterase activity, and changed the distribution of MPs in the gut. In addition, we also quantified the influences of size and surface charge on the selectivity of D. magna. The daphnids selectively ingested larger and positively charged plastics. MPs effectively reduced the uptake of NP and increased its gut passage time. Aggregation of positively and negatively charged MNPs also influenced the gut distribution and increased the gut passage time. The positively charged MPs accumulated in the middle and posterior gut, while aggregation of MNPs also increased acidification and esterase activity. These findings provided fundamental knowledge on the selectivity of MNPs and the microenvironmental responses of zooplankton guts.
Collapse
Affiliation(s)
- Mengjing Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|