1
|
Kohl F, Vogl T, Hampel F, Dube H. Hemiphosphoindigos as a platform for chiroptical or water soluble photoswitching. Nat Commun 2025; 16:1760. [PMID: 39971955 PMCID: PMC11840110 DOI: 10.1038/s41467-025-56942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
Photoswitches are important molecular tools to precisely control the behavior of matter by using light irradiation. They have found application in virtually all applied chemical fields from chemical biology to material sciences. However, great challenges remain in advanced property design including tailored chiroptical responses or water solubility. Here, hemiphosphoindigo (HPI) photoswitches are presented as capable phosphorus-based photoswitches and a distinct addition to the established indigoid chromophore family. Phosphinate is embedded in the core indigoid chromophore and the resulting optimized photoswitches display high thermal stabilities, excellent fatigue resistance and high isomer enrichment. A series of planar, twisted and heterocyclic HPIs are investigated to probe design strategies for advantageous photophysical properties. The phosphinate provides a platform for easily accessible, water-soluble photoswitches, especially interesting for biological applications. Its chiral nature further allows light-induced modulation of chiroptical properties. HPIs therefore open up a distinct structural space for photoswitch generation and advanced light-responsive applications.
Collapse
Affiliation(s)
- Fabien Kohl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Theresa Vogl
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nurnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|
2
|
Kaneda N, Imato K, Sasaki A, Tanaka R, Imae I, Hirata T, Matsumoto T, Ooyama Y. Main-chain stiff-stilbene photoswitches in solution, in bulk, and at surfaces. Chem Sci 2024; 15:20545-20555. [PMID: 39600512 PMCID: PMC11587148 DOI: 10.1039/d4sc06470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Molecular photoswitches have been incorporated into polymer backbones to control the macromolecular conformations by structural changes of the main-chain photoswitches. However, previous photoswitches installed in the main chains are thermolabile, which precludes deep understanding, precise regulation, and practical applications of the macromolecular conformational changes. Herein, we focus on sterically hindered stiff stilbene (HSS), an emerging photoswitch offering large structural changes in isomerization between the thermally bistable E and Z isomers, and disclose the chemistry of main-chain HSS photoswitches in solution, in bulk, and at thin film surfaces. We synthesize and investigate three types of linear polymers with different chemical linkages between HSS repeating units, polyurethane, polyester, and polyene. The polymer conformations in solution, i.e., hydrodynamic volume, are reversibly photocontrollable in a precise manner by the E/Z ratio. Furthermore, the nanoscopic conformational transformations are amplified to macroscopic photoswitching of the solution transmittance and the surface wettability synergistically with changes between interchain and intrachain hydrogen bonding in the polyurethanes. Additionally, the Z-to-E photoisomerization yields in the glassy state are above 70%, comparable to those in solution, and extraordinarily high despite the restricted molecular mobility. The findings of this study will pave the way for practical and unconventional applications of smart polymer systems based on photoswitches.
Collapse
Affiliation(s)
- Naoki Kaneda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Ayane Sasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Ryo Tanaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Ichiro Imae
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Toyoaki Hirata
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodaicho, Nada Kobe 657-8501 Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| |
Collapse
|
3
|
Lvov AG, Berdnikova DV. Rubizhne Institute - A Birthplace of Photochromic Molecules. CHEM REC 2024; 24:e202400143. [PMID: 39491506 DOI: 10.1002/tcr.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Indexed: 11/05/2024]
Abstract
We introduce the community to the remarkable fact that two significant discoveries in the field of organic photoswitches are associated to the Rubizhne (Rubezhnoe) branch of the Research Institute of Organic Intermediates and Dyes during the last century. The institute in Rubizhne was a place where researchers of various nationalities carried out studies of organic dyes for printing and textiles. These efforts resulted in the discoveries of photoswitchable hemithioindigos by M. A. Mostoslavskii and peri-aryloxyquinones by Yu. E. Gerasimenko. Herein, based on the available literature, we reconstruct the circumstances surrounding these outstanding findings and highlight the unique role of the Rubizhne institute as a research center. Furthermore, we demonstrate the impact of the results of the Rubizhne researchers on the field of photoswitchable molecules.
Collapse
Affiliation(s)
- Andrey G Lvov
- Laboratory of photoactive compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., Irkutsk, 664033, Russia
- Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russia
| | - Daria V Berdnikova
- Organische Chemie II, Universität Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| |
Collapse
|
4
|
Boëtius ME, Hoorens MWH, Ošťadnický M, Laurent AD, di Donato M, van Wingaarden ACA, Hilbers MF, Feringa BL, Buma WJ, Medveď M, Szymanski W. Getting a molecular grip on the half-lives of iminothioindoxyl photoswitches. Chem Sci 2024:d4sc01457j. [PMID: 39165728 PMCID: PMC11331343 DOI: 10.1039/d4sc01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Visible-light-operated photoswitches are of growing interest in reversibly controlling molecular processes, enabling for example the precise spatiotemporal focusing of drug activity and manipulating the properties of materials. Therefore, many research efforts have been spent on seeking control over the (photo)physical properties of photoswitches, in particular the absorption maxima and the half-life. For photopharmacological applications, photoswitches should ideally be operated by visible light in at least one direction, and feature a metastable isomer with a half-life of 0.1-10 seconds. Here we present our efforts towards the engineering of the half-life of iminothioindoxyl (ITI) photoswitches, a recently discovered class of visible-light-responsive photochromes, whose applicability was hitherto limited by half-lives in the low millisecond range. Through the synthesis and characterization of a library of ITI photoswitches, we discovered variants with a substantially increased thermal stability, reaching half-lives of up to 0.2 seconds. Based on spectroscopic and computational analyses, we demonstrate how different substituent positions on the ITI molecule can be used to tune its photophysical properties independently to fit the desired application. Additionally, the unique reactivity of the ITI derivative that featured a perfluoro-aromatic ring and had the most long-lived metastable state was shown to be useful for labeling of nucleophilic functional groups. The present research thus paves the way for using ITI photoswitches in photopharmacology and chemical biology.
Collapse
Affiliation(s)
- Melody E Boëtius
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen A. Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Mark W H Hoorens
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
| | - Martin Ošťadnický
- Faculty of Natural Sciences, Comenius University Ilkovičova 6 SK-842 15 Bratislava Slovak Republic
| | - Adèle D Laurent
- Nantes Université, CNRS CEISAM UMR 6230 F-44000 Nantes France
| | - Mariangela di Donato
- LENS, European Laboratory for Non-Linear Spectroscopy 50019 Sesto Fiorentino FI Italy
- CNR-ICCOM via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
| | - Aldo C A van Wingaarden
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
| | - Michiel F Hilbers
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Ben L Feringa
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
| | - Wybren Jan Buma
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Miroslav Medveď
- Faculty of Natural Sciences, Department of Chemistry, Matej Bel University Tajovského 40 SK-97400 Banská Bystrica Slovak Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc Křížkovského 511/8 77900 Olomouc Czech Republic
| | - Wiktor Szymanski
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen Hanzeplein 1 9713GZ Groningen The Netherlands
- Center for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen Nijenborgh 7 Groningen The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen A. Deusinglaan 1 9713 AV Groningen The Netherlands
| |
Collapse
|
5
|
Zitzmann M, Fröhling M, Dube H. Gain of Function Recyclable Photoswitches: Reversible Simultaneous Substitution and Photochromism Generation. Angew Chem Int Ed Engl 2024; 63:e202318767. [PMID: 38315498 DOI: 10.1002/anie.202318767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
The use of molecular photoswitches has spread to virtually every field of pure and applied chemistry because of the extraordinary level of control they provide over the behavior of matter at the smallest scales. Photoswitches possess at least two different states with distinct structures and/or electronics and further functionalization of their core chromophore structures is needed to tailor them for a specific application. In this work we present a different concept for the generation and use of molecular photoswitches. It allows not only simultaneous establishment of photochromism and functionalization, but also full recyclability of a non-photochromic precursor material. Using a high-yielding and reversible ammonium salt formation, a functional group is introduced into a symmetric precursor while at the same time a strong electronic push-pull character is established in the structure. The resulting desymmetrization leads to efficient photoswitching capacity and the functional group can be fully removed subsequently by a simple heating step recovering the precursor for another functionalization round. We finally demonstrate feasibility of this concept over two consecutive closed loop functionalization/photoswitching/recovery steps. This concept offers great potential in any chemical research and application driven area but especially for the creation of responsive reprogrammable materials, no-background photoswitch labeling, and sustainable chemistry.
Collapse
Affiliation(s)
- Max Zitzmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Matthias Fröhling
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
6
|
Das P, Grinalds NJ, Ghiviriga I, Abboud KA, Dobrzycki Ł, Xue J, Castellano RK. Dicyanorhodanine-Pyrrole Conjugates for Visible Light-Driven Quantitative Photoswitching in Solution and the Solid State. J Am Chem Soc 2024; 146:11932-11943. [PMID: 38629510 DOI: 10.1021/jacs.4c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Small molecule photoswitches capable of toggling between two distinct molecular states in response to light are versatile tools to monitor biological processes, control photochemistry, and design smart materials. In this work, six novel dicyanorhodanine-based pyrrole-containing photoswitches are reported. The molecular design avails both the Z and E isomers from synthesis, where each can be isolated using chromatographic techniques. Inter- and intramolecular hydrogen bonding (H-bonding) interactions available to the E and Z isomers, respectively, uniquely impart thermal stability to each isomer over long time periods. Photoisomerization could be assessed by solution NMR and UV-vis spectroscopic techniques along with complementary ground- and excited-state computational studies, which show good agreement. Quantitative E → Z isomerization occurs upon 523 nm irradiation of the parent compound (where R = H) in solution, whereas Z → E isomerization using 404 nm irradiation offers a photostationary state (PSS) ratio of 84/16 (E/Z). Extending the π-conjugation of the pyrrole unit (where R = p-C6H4-OMe) pushes the maximum absorption to the yellow-orange region of the visible spectrum and allows bidirectional quantitative isomerization with 404 and 595 nm excitation. Comparator molecules have been prepared to report how the presence or absence of H-bonding affects the photoswitching behavior. Finally, studies of the photoswitches in neat films and photoinactive polymer matrices reveal distinctive structural and optical properties of the Z and E isomers and ultimately afford reversible photoswitching to spectrally unique PSSs using visible light sources including the Sun.
Collapse
Affiliation(s)
- Parag Das
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Nathan J Grinalds
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Łukasz Dobrzycki
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| | - Jiangeng Xue
- Department of Materials Science and Engineering, University of Florida, P. O. Box 116400, Gainesville, Florida 32611, United States
| | - Ronald K Castellano
- Department of Chemistry, University of Florida, P. O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Köttner L, Ciekalski E, Dube H. Peri-Anthracenethioindigo: A Scaffold for Efficient All-Red-Light and Near-Infrared Molecular Photoswitching. Angew Chem Int Ed Engl 2023; 62:e202312955. [PMID: 37806956 DOI: 10.1002/anie.202312955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Molecular photoswitching with red light is greatly desired to evade photodamage and achieve specific photoresponses. In virtually all reported cases however, only one switching direction uses red light while for the reverse switching, UV or visible light is needed. All-red-light photoswitching brings with it the clear advantage of pushing photoswitching to the limit of the low-energy spectrum, but no viable system is available currently. Here we report on peri-anthracenethioindigo (PAT) as molecular scaffold for highly efficient all-red-light photoswitching with an outstanding performance and property profile. The PAT photoswitch provides near-infrared (NIR) absorption up to 850 nm, large negative photochromism with more than 140 nm maxima shifts and changes color from green to blue upon irradiation with two shades of red light. Thermal stability of the metastable Z isomer is high with a corresponding half-life of days at 20 °C. Application in red-light responsive polymers undergoing pronounced and reversible green to blue color changes demonstrate spatially resolved photoswitching. The PAT photoswitch thus offers unique responsiveness to very low energy light together with predictable and large geometrical changes within a rigid molecular scaffold. We expect a plethora of applications for PAT in the near future, e.g. in materials, molecular machines or biological context.
Collapse
Affiliation(s)
- Laura Köttner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Elias Ciekalski
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
8
|
Sacherer M, Hampel F, Dube H. Diaryl-hemiindigos as visible light, pH, and heat responsive four-state switches and application in photochromic transparent polymers. Nat Commun 2023; 14:4382. [PMID: 37474507 PMCID: PMC10359318 DOI: 10.1038/s41467-023-39944-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Photoswitches are indispensable tools for responsive chemical nanosystems and are used today in almost all areas of the natural sciences. Hemiindigo (HI) derivatives have recently been introduced as potent photoswitches, but their full applicability has been hampered by the limited possibilities of their functionalization and structural modification. Here we report on a short and easy to diversify synthesis yielding diaryl-HIs bearing one additional aromatic residue at the central double bond. The resulting chromophores offer an advantageous property profile combining red-light responsiveness, high thermal bistability, strong isomer accumulations in both switching directions, strong photochromism, tunable acid responsiveness, and acid gating. With this progress, a broader structural realm becomes accessible for HI photoswitches, which can now be synthetically tailored for advanced future applications, e.g., in research on molecular machines and switches, in studies of photoisomerization mechanisms, or in the generation of smart and addressable materials. To showcase the potential of these distinct light-responsive molecular tools, we demonstrate four-state switching, chemical fueling, and reversible inscription into transparent polymers using green and red light as well as acid/base stimuli, in addition to a comprehensive photochemical study of all compounds.
Collapse
Affiliation(s)
- Maximilian Sacherer
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Frank Hampel
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.
| |
Collapse
|