1
|
Peeketi AR, Joseph E, Swaminathan N, Annabattula RK. Photo-activated dynamic isomerization induced large density changes in liquid crystal polymers: A molecular dynamics study. J Chem Phys 2024; 160:104902. [PMID: 38465687 DOI: 10.1063/5.0187320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
We use molecular dynamics simulations to unravel the physics underpinning the light-induced density changes caused by the dynamic trans-cis-trans isomerization cycles of azo-mesogens embedded in a liquid crystal polymer network, an intriguing experimental observation reported in the literature. We employ two approaches, cyclic and probabilistic switching of isomers, to simulate dynamic isomerization. The cyclic switching of isomers confirms that dynamic isomerization can lead to density changes at specific switch-time intervals. The probabilistic switching approach further deciphers the physics behind the non-monotonous relation between density reduction and light intensities observed in experiments. Light intensity variations in experiments are accounted for in simulations by varying the trans-cis and cis-trans isomerization probabilities. The simulations show that an optimal combination of these two probabilities results in a maximum density reduction, corroborating the experimental observations. At such an optimal combination of probabilities, the dynamic trans-cis-trans isomerization cycles occur at a specific frequency, causing significant distortion in the polymer network, resulting in a maximum density reduction.
Collapse
Affiliation(s)
- Akhil Reddy Peeketi
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Edwin Joseph
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narasimhan Swaminathan
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratna Kumar Annabattula
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Kumar V, Siraj SA, Satapathy DK. Multivapor-Responsive Controlled Actuation of Starch-Based Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3966-3977. [PMID: 38224457 DOI: 10.1021/acsami.3c15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Multivapor-responsive biocompatible soft actuators have immense potential for applications in soft robotics and medical technology. We report fast, fully reversible, and multivapor-responsive controlled actuation of a pure cassava-starch-based film. Notably, this starch-based actuator sustains its actuated state for over 60 min with a continuous supply of water vapor. The durability of the film and repeatability of the actuation performance have been established upon subjecting the film to more than 1400 actuation cycles in the presence of water vapor. The starch-based actuators exhibit intriguing antagonistic actuation characteristics when exposed to different solvent vapors. In particular, they bend upward in response to water vapor and downward when exposed to ethanol vapor. This fascinating behavior opens up new possibilities for controlling the magnitude and direction of actuation by manipulating the ratio of water to ethanol in the binary solution. Additionally, the control of the bending axis of the starch-based actuator, when exposed to water vapor, is achieved by imprinting-orientated patterns on the surface of the starch film. The effect of microstructure, postsynthesis annealing, and pH of the starch solution on the actuation performance of the starch film is studied in detail. Our starch-based actuator can lift 10 times its own weight upon exposure to ethanol vapor. It can generate force ∼4.2 mN upon exposure to water vapor. To illustrate the vast potential of our cassava-starch-based actuators, we have showcased various proof-of-concept applications, ranging from biomimicry to crawling robots, locomotion near perspiring human skin, bidirectional electric switches, ventilation in the presence of toxic vapors, and smart lifting systems. These applications significantly broaden the practical uses of these starch-based actuators in the field of soft robotics.
Collapse
Affiliation(s)
- Vipin Kumar
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Sarah Ahmad Siraj
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| | - Dillip K Satapathy
- Soft Materials Laboratory, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India
- Center for Soft and Biological Matter, IIT Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
3
|
Takatoh K, Kobayashi M, Ito M. Optical Filters with Asymmetric Transmittance Depending on the Incident Angle, Produced Using Liquid Crystalline Ink (Louver LC Filters). MATERIALS (BASEL, SWITZERLAND) 2023; 16:5584. [PMID: 37629875 PMCID: PMC10456562 DOI: 10.3390/ma16165584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
In many situations in everyday life, sunlight levels need to be reduced. Optical filters with asymmetric transmittance dependent on the incident angle would be useful for sunglasses and vehicle or architectural windows, among others. Herein, we realized the production of optical filters, called "louver filters", comprising HAN-type LC film produced using liquid crystalline ink with dichroic dyes. For the formation of the HAN-type LC film, the liquid crystalline ink was aligned on a rubbed polyimide layer and polymerized by UV irradiation. Two kinds of filters are proposed: one is a filter composed of HAN-type LC film and a polarizer, and the other is composed of two HAN-LC films with a half-wave plate between them. The dependence of the asymmetric transmittance on the incident angle was confirmed for these filters. The dependence changed depending on the pretilt angle of the alignment layers. Photographs taken with the optical filters displayed their effectiveness.
Collapse
Affiliation(s)
- Kohki Takatoh
- Department of Electrical Engineering, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda 756-0884, Japan
| | - Mika Kobayashi
- Department of Electrical Engineering, Faculty of Engineering, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda 756-0884, Japan
| | - Masahiro Ito
- Medical Engineering Course, Department of Medical Course, Faculty of Health and Medical Science, Teikyo Heisei University, 2-51-4 Higashi-ikebukuro, Toshima-ku, Tokyo 170-8445, Japan;
| |
Collapse
|
4
|
Jayoti D, Peeketi AR, Kumbhar PY, Swaminathan N, Annabattula RK. Geometry Controlled Oscillations in Liquid Crystal Polymer Films Triggered by Thermal Feedback. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18362-18371. [PMID: 36975405 DOI: 10.1021/acsami.3c02472] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.
Collapse
Affiliation(s)
- Divya Jayoti
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akhil Reddy Peeketi
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pramod Yallappa Kumbhar
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Narasimhan Swaminathan
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratna Kumar Annabattula
- Center for Soft and Biological Matter, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
5
|
Peeketi AR, Sol JAHP, Swaminathan N, Schenning APHJ, Debije MG, Annabattula RK. Calla Lily flower inspired morphing of flat films to conical tubes. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akhil R. Peeketi
- Center for Responsive Soft Matter, Department of Mechanical Engineering Indian Institute of Technology Madras Chennai India
| | - Jeroen A. H. P. Sol
- Laboratory of Stimuli‐Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry Eindhoven University of Technology (TU/e) Eindhoven The Netherlands
| | - Narasimhan Swaminathan
- Center for Responsive Soft Matter, Department of Mechanical Engineering Indian Institute of Technology Madras Chennai India
| | - Albert P. H. J. Schenning
- Laboratory of Stimuli‐Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry Eindhoven University of Technology (TU/e) Eindhoven The Netherlands
- Institute for Complex Molecular Systems (ICMS) Eindhoven University of Technology (TU/e) Eindhoven The Netherlands
| | - Micheal G. Debije
- Laboratory of Stimuli‐Responsive Functional Materials and Devices (SFD), Department of Chemical Engineering and Chemistry Eindhoven University of Technology (TU/e) Eindhoven The Netherlands
| | - Ratna K. Annabattula
- Center for Responsive Soft Matter, Department of Mechanical Engineering Indian Institute of Technology Madras Chennai India
| |
Collapse
|