1
|
Zhou Y, Zhang X, Zheng Y, Liu J, Bao Y, Shan G, Yu C, Pan P. Moisture-responsive ultralow-hysteresis polymer ionogels for adhesion-switchable strain sensing. MATERIALS HORIZONS 2025; 12:2592-2603. [PMID: 39806921 DOI: 10.1039/d4mh01593b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Adhesion-switchable ultralow-hysteresis polymer ionogels are highly demanded in soft electronics to avoid debonding damage and signal distortion, yet the design and fabrication of such ionogels are challenging. Herein, we propose a novel method to design switchable adhesive ionogels by using binary ionic solvents with two opposite-affinity ionic components. The obtained ionogels exhibit moisture-induced phase separation, facilitating switchable adhesion with a high detaching efficiency (>99%). Moreover, before and after phase separation, the viscoelastic behavior of the ionogels is maintained in the rubbery plateau region within common frequency ranges with ultralow mechanical hysteresis (∼3%) under large strain, enabling accurate and stable strain and pressure sensing. Accordingly, the ionogel films can be used as functional elements in a smart clamp to realize flytrap-like selective activation, based on high sensitivity to the vibration intensity from the targeted prey. This work may inspire future research on the development of advanced soft electronics.
Collapse
Affiliation(s)
- Yichen Zhou
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Xing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Ying Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Junfeng Liu
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Guorong Shan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Chengtao Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, 324000, China
| |
Collapse
|
2
|
Huang Y, Zhu H, Zhang Q, Zhu S. Ionogel Adhesives: From Structural Design to Emerging Applications. Macromol Rapid Commun 2025; 46:e2400973. [PMID: 39950707 DOI: 10.1002/marc.202400973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/22/2025] [Indexed: 04/18/2025]
Abstract
Adhesives are indispensable in both daily household applications and advanced industrial settings, where they must deliver exceptional bonding performance. Ionogel adhesives, which feature a supporting polymer network infused with ionic liquid (IL), have emerged as promising candidates due to their unique structural and functional properties. The presence of ionic species within ionogels promotes non-covalent interactions-such as ionic bonds, ion-dipole interactions, and hydrogen bonding-that enhance both cohesion within the material and adhesion to various substrates. These characteristics make ionogels ideal for applications that require robust adhesive performance, especially in demanding environments. Despite the growing interest in ionogel adhesives, a comprehensive review of the latest advancements in this area is lacking. This paper aims to fill this gap by categorizing ionogel adhesives based on their composition and discussing strategies to enhance their adhesive properties. Additionally, novel ionogel adhesives designed for specific applications are highlighted. Finally, the current state of research is summarized, and offers insights into the challenges and future opportunities for the development of ionogel adhesives.
Collapse
Affiliation(s)
- Yangyu Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
3
|
Linghu C, Liu Y, Yang X, Chen Z, Feng J, Zhang Y, Li Y, Zhao Z, Seo YJ, Li J, Jiang H, Su J, Fang Y, Li Y, Wang X, Wang Y, Gao H, Hsia KJ. Versatile adhesive skin enhances robotic interactions with the environment. SCIENCE ADVANCES 2025; 11:eadt4765. [PMID: 39823320 PMCID: PMC11740926 DOI: 10.1126/sciadv.adt4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions. The adhesion strength of our adhesive skin can be changed from minimal (~1 kilopascal) for sensing and handling ultralightweight objects to ultrastrong (>1 megapascal) for picking up and lifting heavy objects. Our versatile adhesive skin is expected to greatly enhance the ability of intelligent robots to interact with their environment.
Collapse
Affiliation(s)
- Changhong Linghu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yangchengyi Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xudong Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhou Chen
- College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
| | - Jin Feng
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yiyuan Zhang
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yan Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhao Zhao
- China Special Equipment Inspection and Research Institute, Beijing 100029, China
| | - Young-Jae Seo
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Junwei Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Haoyu Jiang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University, Beijing 100191, China
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Huajian Gao
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
4
|
Li T, Zhang X, Yu W, Liu S. Multiresponsive Ionogel with Switchable Adhesion Triggered by Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39563645 DOI: 10.1021/acsami.4c13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The rapid development of wearable devices and soft robotics has an urgent demand for polymer conductors with a switchable adhesion property. Herein, we report a supramolecular ionogel (SIG) that can reversibly switch between adhesion and debonding to various substrates. The on/off switchable adhesion of SIG is attributed to phase separation induced by the aggregation of polymer chains and the formation of a lubricating layer, which impairs the contact between polymer chains and substrates, thus weakening interfacial interaction. The phase separation ionogel (PSIG) is highly sensitive to humidity, leading to the debonded PSIG instantly transforming into the adhesion-hydrated ionogel (HIG) owing to the disruption of phase structure. Based on the switchable adhesion property, this multiresponsive ionogel shows potential applications as a fire alarm and intelligent conductive tape. This work provides a simple method for developing a switchable adhesion ionic polymer conductor and broadens the application of the ionogel in flexible devices.
Collapse
Affiliation(s)
- Teng Li
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xueliang Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sijun Liu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
Shen S, Wu Q, Chen X, Li J, Zhao X, Ma C, Liu C, Liu H. Large-scale semi-embedded AgNW-based stretchable transparent electrodes via superwettability-induced transfer of AgNWs/ionic liquid onto gradient PDMS. NANOSCALE 2024; 16:19828-19833. [PMID: 39370856 DOI: 10.1039/d4nr03517h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Stretchable transparent electrodes (STEs) composed of highly conductive silver nanowires (AgNWs) and mechanically stretchable polydimethylsiloxane (PDMS) are compelling materials for the development of flexible electronic devices. So far, the fabrication processes of the AgNWs/PDMS-based STEs suffer from low efficiency on a small scale, apart from the limitations and challenges posed by the continuous fabrication processes that are required to exploit these fascinating materials in an industrial context. Here, we have addressed these limitations by using gradient PDMS with a tunable modulus as the stretchable substrate, on which ionic liquid-mediated aligned semi-embedded AgNWs are formed via a scalable superwettability-induced transfer strategy. We have demonstrated the importance of the gradient PDMS in achieving STEs with improved optoelectrical properties, mechanical stretchability, and long-term stability. Furthermore, we have shown the applications of the designed STEs for electro-heating and electroluminescent devices. This promising fabrication process is an industrially relevant alternative to current processes that are either complicated and less effective (for example, stamping transfer) or not compatible with continuous, large-scale production (for example, spin-coating or electrospinning).
Collapse
Affiliation(s)
- Shoujie Shen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, P. R. China
| | - Qiyu Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, P. R. China
| | - Xingchao Chen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, P. R. China.
| | - Jia Li
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, P. R. China
| | - Xuanting Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, P. R. China.
| | - Chuao Ma
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, P. R. China.
| | - Chan Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, P. R. China.
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264006, P. R. China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, P. R. China
| |
Collapse
|
6
|
Ma Y, Wang Y, Zhou J, Lan Y, Jiang S, Ge Y, Tan S, Zhang S, Wang C, Wu Y. LCST ion gels fabricating "all-in-one" smart windows: thermotropic, electrochromic and power-generating. MATERIALS HORIZONS 2024; 11:3825-3834. [PMID: 38814016 DOI: 10.1039/d4mh00082j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Smart windows always respond to single stimuli, which cannot satisfy various needs in practical applications. Smart windows that integrate thermotropic, electrochromic and power-generating functions in one device is highly challenging yet important in satisfying on-demand light modulation and energy efficiency in practical applications. Herein, a thermoresponsive lower critical solution temperature (LCST) ion gel was fabricated via a facile in situ polymerization of butyl acrylate in a conventional ionic liquid to explore "all in one" smart windows. The ion gel-assembled smart windows are thermotropic and electrochromic with a reliable adjustment of light transparency as well as power-generating, enabled by the ionic Soret effect of ionic liquids. Additionally, the ion gels demonstrated self-defensive robust mechanical properties, thermal insulating and antifogging properties. With such an interdisciplinary and comprehensive study of the ion gels, the LCST ion gels could fulfil the requirements of genius windows with high energy-saving potential and exceptional climate adaptability, such as shut-down of light transmission in summer, daily solar energy collection, and colour changes on demand. It conceptually updates smart windows from an energy saving to an energy supplier in buildings. It is the first time to explore the "all in one" smart windows based on integrated multifunctional ionic liquids, which could greatly bridge the gap between the materials and buildings to accelerate practical applications of smart windows.
Collapse
Affiliation(s)
- Yue Ma
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yunbo Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Junyu Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yueyang Lan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Sheng Jiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yifan Ge
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410004, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Xie J, Li X, He Z, Fan L, Yao D, Zheng Y. Preparation of tough and stiff ionogels via phase separation. MATERIALS HORIZONS 2024; 11:238-250. [PMID: 37909216 DOI: 10.1039/d3mh01587d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Ionogels have the advantages of thermal stability, non-volatility, ionic conductivity and environmental friendliness, and they can be used in the field of flexible electronics and soft robotics. However, their poor mechanical strength and complex preparation methods limit their practical application. Herein, we propose a simple strategy to improve the performance of ionogels by adjusting their phase separation behavior. In a polymer-ionic liquid (IL) binary system with an upper critical solution temperature (UCST) and Berghmans' point, the phase separation behavior will be frozen below the temperature corresponding to the Berghmans' point, and thus, the degree of phase separation can be adjusted by controlling the cooling rate. We found that a polyacrylamide (PAM)-IL binary system possessed a UCST and Berghmans' point and the resulting ionogels had excellent mechanical properties. Their tensile strength, tensile modulus, compressive strength and compressive modulus reached 31.1 MPa, 319.8 MPa, 122 MPa and 1.7 GPa, respectively, while these properties of the other ionogels were generally less than 10 MPa. Furthermore, they were highly transparent, stretchable, stable and multifunctional.
Collapse
Affiliation(s)
- Jinliang Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China.
| | - Xiaoqian Li
- Department of Ultrasonic Medicine, Tang Du Hospital, Air Force Medical University, No. 569 of Xin Si Road, Xi'an, Shaanxi 710038, P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China.
| | - Ling Fan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China.
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, P. R. China.
| |
Collapse
|
8
|
Chen L, Lin C, Zhao C, Duan X, Zhao T, Liu M. Ionic Liquids: An Ideal Solvent for Tuning the UCST Phase Behavior of Polymer Gels. J Phys Chem B 2023; 127:10903-10911. [PMID: 38061758 DOI: 10.1021/acs.jpcb.3c05811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Liquid-liquid phase separation (LLPS) is a common stimulus-responsive phenomenon widely studied and applied in constructing intelligent systems such as microfluidic valves, smart windows, and biosensors. However, LLPS in an aqueous solution has limited applicability confined to a narrow temperature range within 0-100 °C. In addition, for easy exploitation of thermoresponsive behavior, phase separation must be stable and accurately predictable under varying conditions. This study proposes a gel system exhibiting UCST phase behavior using ionic liquids (ILs) and hydrophilic polymers, whose phase transition temperature can be linearly tuned within a wide range (from subzero to over 100 °C) by varying the mixing ratio of ILs in their blends. Similar to the mixing of ILs with structurally similar cations, mixing ILs containing different anions proved to be an effective ideal random mixing method based on experimental results and molecular dynamics simulations. This mixing mechanism of ILs accounts for the linear regulation of the UCST of the ionogels when the mixing ratio of ILs in their blends varies. Moreover, the unique feature of ILs was further demonstrated using other hydrophilic polymer networks and multiple combinations of ILs, suggesting the generality of this strategy for UCST regulation in the ionogels.
Collapse
Affiliation(s)
- Lie Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
- Nerve-Machine Integration and Cognitive Competition Center, Beijing Machine and Equipment Institute, No. 50 Yongding Road, Haidian District, Beijing 100854, China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Cong Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Tianyi Zhao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
- International Research Institute for Multidisciplinary Science, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
- International Research Institute for Multidisciplinary Science, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
9
|
Shmool TA, Martin LK, Jirkas A, Matthews RP, Constantinou AP, Vadukul DM, Georgiou TK, Aprile FA, Hallett JP. Unveiling the Rational Development of Stimuli-Responsive Silk Fibroin-Based Ionogel Formulations. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:5798-5808. [PMID: 37576585 PMCID: PMC10413859 DOI: 10.1021/acs.chemmater.3c00303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/20/2023] [Indexed: 08/15/2023]
Abstract
We present an approach for the rational development of stimuli-responsive ionogels which can be formulated for precise control of multiple unique ionogel features and fill niche pharmaceutical applications. Ionogels are captivating materials, exhibiting self-healing characteristics, tunable mechanical and structural properties, high thermal stability, and electroconductivity. However, the majority of ionogels developed require complex chemistry, exhibit high viscosity, poor biocompatibility, and low biodegradability. In our work, we overcome these limitations. We employ a facile production process and strategically integrate silk fibroin, the biocompatible ionic liquids (ILs) choline acetate ([Cho][OAc]), choline dihydrogen phosphate ([Cho][DHP]), and choline chloride ([Cho][Cl]), traditional pharmaceutical excipients, and the model antiepileptic drug phenobarbital. In the absence of ILs, we failed to observe gel formation; yet in the presence of ILs, thermoresponsive ionogels formed. Systems were assessed via visual tests, transmission electron microscopy, confocal reflection microscopy, dynamic light scattering, zeta potential and rheology measurements. We formed diverse ionogels of strengths ranging between 18 and 642 Pa. Under 25 °C storage, formulations containing polyvinylpyrrolidone (PVP) showed an ionogel formation period ranging over 14 days, increasing in the order of [Cho][DHP], [Cho][OAc], and [Cho][Cl]. Formulations lacking PVP showed an ionogel formation period ranging over 32 days, increasing in the order of [Cho][OAc], [Cho][DHP] and [Cho][Cl]. By heating from 25 to 60 °C, immediately following preparation, thermoresponsive ionogels formed below 41 °C in the absence of PVP. Based on our experimental results and density functional theory calculations, we attribute ionogel formation to macromolecular crowding and confinement effects, further enhanced upon PVP inclusion. Holistically, applying our rational development strategy enables the production of ionogels of tunable physicochemical and rheological properties, enhanced drug solubility, and structural and energetic stability. We believe our rational development approach will advance the design of biomaterials and smart platforms for diverse drug delivery applications.
Collapse
Affiliation(s)
- Talia A. Shmool
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Laura K. Martin
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K.
| | - Andreas Jirkas
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Richard P. Matthews
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
- Department
of Bioscience, School of Health, Sports and Bioscience, University of East London, Stratford, London E15 4LZ, U.K.
| | - Anna P. Constantinou
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Devkee M. Vadukul
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Theoni K. Georgiou
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Francesco A. Aprile
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Jason P. Hallett
- Department
of Chemical Engineering, Imperial College
London, South Kensington Campus, London SW7 2AZ, U.K.
| |
Collapse
|