1
|
Tian E, Cao G, Dong H, Xu Z, Shen Z. Triple circularly polarized luminescence of phenylalanine-based supramolecular gels regulated by kinetic and thermodynamic assembly pathways. Chem Commun (Camb) 2025; 61:2965-2968. [PMID: 39840990 DOI: 10.1039/d4cc05548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A single phenylalanine-based gelator can self-assemble into various chiral nanostructures with triple circularly polarized luminescence (CPL). Its supramolecular assembly and CPL emission are found to be dependent on the kinetic and thermodynamic pathways. This work provides new insight into the regulation of CPL-active functional materials.
Collapse
Affiliation(s)
- Enquan Tian
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Guanghui Cao
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Huanhuan Dong
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Zhichao Xu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| | - Zhaocun Shen
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, Qingdao, 266071, P. R. China.
| |
Collapse
|
2
|
Li H, Luo J, Liu C, Yu W, Cheng Y. Strong Circularly Polarized Luminescence Promoted by AIE-active Chiral Co-assemblies in Liquid Crystal Polymer Films. Chemistry 2024; 30:e202303852. [PMID: 38299784 DOI: 10.1002/chem.202303852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Recently, extensive works have focused on increasing the dissymmetry factors (glum) of various circularly polarized luminescence (CPL) materials, which is one of the most important factors for future applications of CPL. Herein, we designed a chiral co-assembled liquid crystal polymer (LCP) PTZ@R/S-PB2, which was prepared by chiral binary co-polymer (R/S-PB2) doped with achiral phenothiazine derivation dye (PTZ). For comparison, ternary co-polymerized LCP (R/S-PT) was synthesized by co-polymerizing with mesogenic monomer, chiral monomer and emissive monomer. Both PTZ@R/S-PB2 and R/S-PT showed aggregation-induced emission (AIE) properties. Interestingly, the CPL signals of both PTZ@R/S-PB2 and R/S-PT were reversed and amplified after thermal annealing treatment. The |glum| values of the co-assembled PTZ@R/S-PB2 were up to 0.13 at a 32 nm thickness, which was 5.4 times that of R/S-PT (|glum|=0.024). This is due to PTZ@R/S-PB2 could form more orderly chiral co-assembly structures. Noticeably, increasing the LCP film thickness could further improve the glum value, and the maximum glum of PTZ@R/S-PB2 could be enhanced to +0.91/-0.82 at a 220 nm thickness.
Collapse
Affiliation(s)
- Hang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaxin Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenting Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Yang B, Yan S, Zhang Y, Feng F, Huang W. Stimuli-responsive luminescence from polar cyano/isocyano-derived luminophores via structural tailoring and self-assembly. Dalton Trans 2024; 53:5320-5341. [PMID: 38411983 DOI: 10.1039/d3dt04049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Polar cyano fragments and their isomeric isocyano counterparts have attracted great attention as stimuli-responsive luminescent materials in a wide range of fields including organic light-emitting diode devices, chemical fluorescent sensors, photoelectric semiconductors, anti-counterfeit products, etc., mainly because of their typical electron-deficient activity, noncovalent recognition ability, and variable coordination capacity. The electron-deficient and polar nature of these blocks have significant effects on the properties of the cyano/isocyano-based luminophore materials, especially concerning their condensed state-dependent electronic structures. Among them, donor-acceptor (D-A) derived unimolecular and co-assembled luminophores have attracted more attention because their large delocalized structures and noncovalent interaction recognition sites can rebuild the electronic transfer character in the aggregative state, thus endowing them with outstanding stimuli-responsive luminescent behavior via intermolecular and intramolecular charge transfer in polytropic morphologies. In this perspective paper, we give a brief introduction on stimuli-responsive organic and coordinated luminophores and the documented typical design concepts and applications in recent years. It is expected that this perspective article will not only summarize the recent developments of polar cyano/isocyano-derived luminophores and their coordination compounds via structural tailoring and self-assembly but also throw light on the future of the design of more sophisticated stimuli-responsive architectures and their versatile properties.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518005, P. R. China
| |
Collapse
|