1
|
Saha D, Witt CL, Fatima R, Uchiyama T, Pande V, Song DP, Fei HF, Yavitt BM, Watkins JJ. Opportunities in Bottlebrush Block Copolymers for Advanced Materials. ACS NANO 2025; 19:1884-1910. [PMID: 39834289 DOI: 10.1021/acsnano.4c12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Bottlebrush block copolymers (BBCPs) are a unique class of materials that contain a backbone with densely grafted and chemically distinct polymeric side chains. The nonlinear architecture of BBCPs provides numerous degrees of freedom in their preparation, including control over key parameters such as grafting density, side chain length, block arrangement, and overall molecular weight. This uniquely branched structure provides BBCPs with several important distinctions from their linear counterparts, including sterically induced side chain and backbone conformations, rapid and large self-assembled nanostructures, and reduced or eliminated entanglement effects (assuming sufficient grafting density and that the molecular weight of the side chains is below their respective entanglement molecular weight). These distinctions allow access to large domain sizes, very rapid assembly, and the ability to preferentially add additives and/or precursors to one domain, thereby enabling the efficient fabrication of a wide range of advanced materials and devices. BBCPs have been utilized to create finely controlled and well-ordered nanostructures for use in applications, such as photonic crystals, drug delivery systems, energy conversion, energy storage devices, and key components in surface coatings. To further deploy BBCPs as templates for the formation of precise nanostructures, having a thorough understanding of their synthesis, self-assembly, and templating is necessary. To explore and understand the self-assembly and subsequent applications of BBCPs, this review emphasizes the physics of self-assembly for BBCPs (including architectural, rheological, and thermodynamic considerations) and structure-property relationships between BBCPs and their resulting nanostructures. Lastly, we provide an overview of current research trends using BBCPs in energy storage, energy conversion, photonic, 3D printing, and drug delivery applications. We aim to provide researchers with the fundamentals of BBCP self-assembly in their use as nanostructured materials to continue their development of advanced materials.
Collapse
Affiliation(s)
- Dipankar Saha
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Connor L Witt
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Rida Fatima
- School of Materials Science and Engineering, Tianjin University (Beiyang Campus), Tianjin 300350, China
| | - Takumi Uchiyama
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Varun Pande
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Dong-Po Song
- School of Materials Science and Engineering, Tianjin University (Beiyang Campus), Tianjin 300350, China
| | - Hua-Feng Fei
- Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benjamin M Yavitt
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - James J Watkins
- Conte Center for Polymer Research, Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Zhu H, Feng W, Wang Y, Li Z, Xu B, Lin S. Dissipative particle dynamics simulations on the self-assembly of rod-coil asymmetric diblock molecular brushes bearing responsive side chains. SOFT MATTER 2025; 21:255-261. [PMID: 39659192 DOI: 10.1039/d4sm01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The self-assembly behaviors of rod-coil asymmetric diblock molecular brushes (ADMBs) bearing responsive side chains in a selective solvent are investigated via dissipative particle dynamics simulations. By systematically varying the polymerization degree, copolymer concentration, and side chain length, several morphological phase diagrams were constructed. ADMB assemblies exhibited a rich variety of morphologies, including cylindrical micelles, spherical micelles, nanowires, polyhedral micelles, ellipsoid micelles, and large compound micelles. The structures of the representative nanowires were analyzed in detail. A kinetics study revealed that the one-dimensional growth of nanowires follows the step-growth polymerization mechanism. Besides, by calculating the local order parameter of the rigid chains, we found that increasing the lengths of A and C side chains can promote the ordered arrangement of the rigid chains. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviors of ADMBs with responsive rigid side chains. The simulation results indicated that the volume of the assemblies expanded without the support of the rigid chains. The present work not only provides a comprehensive understanding of the self-assembly behaviors of ADMBs but also provides meaningful theoretical support for the development of novel molecular brush materials.
Collapse
Affiliation(s)
- Hao Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weisheng Feng
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yueyao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhengyi Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Seong HG, Jin Z, Chen Z, Hu M, Emrick T, Russell TP. Bottlebrush Block Copolymers at the Interface of Immiscible Liquids: Adsorption and Lateral Packing. J Am Chem Soc 2024; 146:13000-13009. [PMID: 38710503 DOI: 10.1021/jacs.3c13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Amphiphilic bottlebrush block copolymers (BBCPs), having a hydrophilic bottlebrush polymer (BP) linked covalently to a hydrophobic BP, were found to segregate to liquid-liquid interfaces to minimize the free energy of the system. The key parameter influencing the outcome of the experiments is the ratio between the degree of polymerization of the backbone (NBB) and that of the side-chain brushes (NSC). Specifically, a spherical, star-like configuration results when NBB < NSC, while a cylindrical, bottlebrush-like shape is preferred when NBB > NSC. Dynamic interfacial tension (γ) and fluorescence recovery after photobleaching (FRAP) measurements show that the BBCP configuration influences the areal density and in-plane diffusion at the fluid interface. The characteristic relaxation times associated with BBCP adsorption (τA) and reorganization (τR) were determined by fitting time-dependent interfacial tension measurements to a sum of two exponential relaxation functions. Both τA and τR initially increased with NBB up to 92 repeat units, due to the larger hydrodynamic radius in solution and slower in-plane diffusivity, attributed to a shorter cross-sectional diameter of the side-chains near the block junction. This trend reversed at NBB = 190, with shorter τA and τR attributed to increased segregation strength and exposure of the bare water/toluene interface due to tilting and/or wiggling of the backbone chains, respectively. The adsorption energy barrier decreased with higher NBB, due to a reduced BBCP packing density at the fluid interface. This study provides fundamental insights into macromolecular assembly at fluid interfaces, as it pertains to unique bottlebrush block architectures.
Collapse
Affiliation(s)
- Hong-Gyu Seong
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zichen Jin
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Zhan Chen
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Mingqiu Hu
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Thomas P Russell
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Asadi V, Dolleman R, van der Gucht J, Kodger TE. 3D printable soft and solvent-free thermoplastic elastomer containing dangling bottlebrush chains. MATERIALS ADVANCES 2023; 4:5535-5545. [PMID: 38013845 PMCID: PMC10642180 DOI: 10.1039/d3ma00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/27/2023] [Indexed: 11/29/2023]
Abstract
Polymer networks containing bottlebrush chains are emerging materials with exceptionally soft and highly tunable mechanical properties. However, such materials have not been extensively implemented in functional processing techniques such as three-dimensional (3D) printing. Here, we introduce a new design of soft and solvent-free polydimethylsiloxane (PDMS)-based thermoplastic elastomer which contains dangling and space-filling bottlebrush chains, featuring a yield stress and a rapid recovery after stress removal; both required for high spatial fidelity 3D printing. The developed material is composed of two copolymers; the main building block is a diblock copolymer with linear polystyrene (PS) block and bottlebrush PDMS block (PS-b-bbPDMS) while the second component is PS-b-PDMS-b-PS triblock, self-assembling to a physical network. This design provides independent tunability of each structural parameter on the molecular level, hence, macroscopic control of the materials' mechanical properties. Multiple self-supportive 3D structures with spanning elements are 3D printed at elevated temperatures using a developed material with a low shear modulus of G' = 3.3 kPa containing 3 : 1 molar ratio of diblock to triblock copolymers without the need for volatile solvent, or post-treatment. This 3D printing compatible design opens new opportunities to utilize the distinctive mechanical properties of bottlebrush materials for applications such as soft tissue scaffolds, sensors, actuators, and soft robots.
Collapse
Affiliation(s)
- Vahid Asadi
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Renee Dolleman
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Thomas E Kodger
- Physical Chemistry and Soft Matter, Wageningen University & Research Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
5
|
Uhlik F, Rud OV, Borisov OV, Zhulina EB. Hairy Gels: A Computational Study. Gels 2022; 8:793. [PMID: 36547317 PMCID: PMC9777993 DOI: 10.3390/gels8120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
We present results of MD and MC simulations of the equilibrium properties of swelling gels with comb-like or bottlebrush subchains and compare them to scaling-theory predictions. In accordance with theory, the simulation results demonstrate that swelling coefficient of the gel increases as a function of the polymerization degree of the main chains and exhibits a very weak maximum (or is virtually constant) as a function of the polymerization degree and grafting density of side chains. The bulk osmotic modulus passes through a shallow minimum as the polymerization degree of the side chains increases. This minimum is attributed to the onset of overlap of side chains belonging to different bottlebrush strands in the swollen gel.
Collapse
Affiliation(s)
- Filip Uhlik
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Oleg V. Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, UMR 5254 CNRS UPPA, CEDEX 9, 64053 Pau, France
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|