1
|
Zhang J, Xu D, Li B, Wang K, Ni Y, Xu J, Wu J, Li X, He H. General fabrication of bioactive dissolving microneedles from whole grain seeds derived starch for transdermal application. Int J Biol Macromol 2025; 308:142500. [PMID: 40154688 DOI: 10.1016/j.ijbiomac.2025.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/17/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Dissolving microneedles (DMNs) have gained increasing attraction for transdermal drug delivery. However, their manufacture is limited due to the lack of suitable fabricating materials. It is highly demanded to explore new materials for DMN preparation. Herein, we were the first to discover that natural grain powders were promising material candidates for DMN manufacture. MD was first used to determine the solvent to prepare microneedles. Then, mold method was used to fabricate five grain seed powders into microneedles. Afterwards, FTIR, XRD, MTT, live/dead assay and antioxidative assays (DPPH and Fenton) were applied to assess the chemical and biological properties of the microneedles. Finally, both in vitro and in vivo experiments were used to assess the transdermal effects of the microneedles. The results demonstrated that the microneedles had excellent biosafety with >90 % of living cells and <5 % of hemolysis rate. Also, the microneedles displayed up to 100 % eradication of free radicals, implying their good antioxidative capabilities. The transdermal study demonstrated that the microneedles could pierce mouse skins and undergo completely and fast dissolving in the skin as quickly as 30 s. This work will motivate more attempts to develop novel transdermal microneedles from natural products for biological applications.
Collapse
Affiliation(s)
- Jian Zhang
- Engineering Research Center of Bioreactor and Pharmaceutical Development Ministry of Education, College of Life Sciences, Jilin Agricultural University, Changchun 130118, Jilin, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, China; School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Dandan Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, China; School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Bingxin Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, China
| | - Kun Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yujun Ni
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jie Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, China; School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Huacheng He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
2
|
He R, Li M, Huang B, Zou X, Li S, Sang X, Yang L. Comparative analysis of multi-angle structural alterations and cold-water solubility of kudzu starch modifications using different methods. Int J Biol Macromol 2024; 264:130522. [PMID: 38428777 DOI: 10.1016/j.ijbiomac.2024.130522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Kudzu, a plant known for its medicinal value and health benefits, is typically consumed in the form of starch. However, the use of native kudzu starch is limited by its high pasting temperature and low solubility, leading to a poor consumer experience. In this study, kudzu starch was treated using six modification techniques: ball milling, extrusion puffing, alcoholic-alkaline, urea-alkaline, pullulanase, and extrusion puffing-pullulanase. The results of the Fourier transform infrared spectrum showed that the intensity ratio of 1047/1022 cm-1 for the modified starches (1.02-1.21) was lower than that of the native kudzu starch (1.22). The relative crystallinity of modified kudzu starch significantly decreased, especially after ball milling, extrusion puffing, and alcoholic-alkaline treatment. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed significant changes in the granular structures of the modified starches. After modification, the pasting temperature of kudzu starch decreased (except for the urea-alkaline treatment), and the apparent viscosity of kudzu starch decreased from 517.95 Pa·s to 0.47 Pa·s. The cold-water solubility of extrusion-puffing and extrusion puffing-pullulanase modified kudzu starch was >70 %, which was significantly higher than that of the native starch (0.11 %). These findings establish a theoretical basis for the potential development of instant kudzu powder.
Collapse
Affiliation(s)
- Ruidi He
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Mingmei Li
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Biao Huang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Xiaochen Zou
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Xiaoyu Sang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China.
| |
Collapse
|
3
|
Min Y, Yi J, Dai R, Liu W, Chen H. A novel efficient wet process for preparing cross-linked starch: Impact of urea on cross-linking performance. Carbohydr Polym 2023; 320:121247. [PMID: 37659826 DOI: 10.1016/j.carbpol.2023.121247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 09/04/2023]
Abstract
Although wet processes are promising for preparing cross-linked starch, they are currently challenged by lower cross-linking efficiency and the requirement of large amounts of salts. Herein, an efficient and greener wet process was proposed, in which the cross-linking performance between sodium hexametaphosphate (SHMP) and starch was enhanced with the aid of urea. The maximum degree of substitution (DS) of the urea-phosphorylated cross-linked starch (UPCS) was 0.040 at 35 °C, while that of the conventional phosphorylated cross-linked starch (CPCS) was 0.031 at 45 °C. Compared with CPCS, the maximum DS of UPCS was elevated by 29.03 %, but its optimum cross-linking temperature was reduced by 10 °C, indicating that the cross-linking efficiency of this novel wet process was greatly improved by urea. The structural difference between UPCS and CPCS was confirmed by using a series of techniques including 31P NMR and 13C NMR. Zeta potential results suggested that urea may promote starch cross-linking by preventing the closure of active sites through hydrophobic interactions. Due to the structural reinforcement of starch by urea, UPCS showed better thermal stability, water resistance, acid and alkali resistance, and steady shear tolerance properties. This study provides a facile wet process for the fabrication and application of cross-linked starch materials.
Collapse
Affiliation(s)
- Yan Min
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jie Yi
- College of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Rui Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Hui Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|