1
|
Wang LC, Wei YP, Chen JS, Liu XP, Mao CJ, Jin BK. A "signal-on" photoelectrochemical biosensor utilizing in-situ synthesis of SnS 2/MgIn 2S 4 heterostructures and enzyme-assisted target cycling amplification for the sensitive detection of the mecA gene. Talanta 2025; 293:128053. [PMID: 40187283 DOI: 10.1016/j.talanta.2025.128053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
To address the urgent need for rapid detection of drug resistance biomarkers for methicillin-resistant Staphylococcus aureus (MRSA), particularly the mecA gene that encods the low-affinity penicillin-binding protein PBP2a, this study developed a dual-amplification photoelectrochemical biosensing platform utilizing in-situ synthesized SnS2/MgIn2S4 heterojunction photoanodes. This system synergistically combines the co-sensitization effect of AgInS2 nanoparticles with Exonuclease III-driven target circular amplification: a type II heterojunction structure was constructed through the low-temperature in-situ growth of MgIn2S4 on SnS2 nanosheets, significantly enhanced the separation efficiency of photogenerated carriers, while the band-matched AgInS2 nanoparticles (NPs) improved the directional charge transfer, thereby amplifying the photocurrent response. After recognizing the target mecA gene, the Exo III-triggered hairpin probe initiated a circular cleavage that triggered cascade amplification, resulting in the generation of a substantial amount of output DNA S1 strands. These strands were subsequently assembled into S1/S2-AgInS2 double-strand bridges on the electrode surface, achieving "signal-on" detection through the formation of co-sensitized nanostructures. The biosensor exhibits a wide dynamic range from 100 aM to 1 nM (R2 = 0.999), an exceptionally low detection limit of 12.9 aM (S/N = 3), and a quantitative recovery rate ranging from 98.30 % to 104.70 % for the mecA gene in environmental water matrices, establishing a reliable analytical tool for monitoring antibiotic resistance genes in aquatic ecosystems.
Collapse
Affiliation(s)
- Le-Chuan Wang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Yu-Ping Wei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Jing-Shuai Chen
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| | - Xing-Pei Liu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China; School of Materials Science and Engineering, Hefei Institute of Technology, Hefei, 238076, PR China.
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China.
| | - Bao-Kang Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Functional Inorganic Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, PR China
| |
Collapse
|
2
|
Guo H, Chen J, Feng Y, Dai Z. A Simple and Robust Exponential Amplification Reaction (EXPAR)-Based Hairpin Template (exp-Hairpin) for Highly Specific, Sensitive, and Universal MicroRNA Detection. Anal Chem 2024; 96:2643-2650. [PMID: 38295438 DOI: 10.1021/acs.analchem.3c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Specific and sensitive detection of microRNAs continues to encounter significant challenges, especially in the development of rapid and efficient isothermal amplification strategies for point-of-care settings. The exponential amplification reaction (EXPAR) has garnered significant attention owing to its simplicity and rapid amplification of signals within a short period. However, a substantial loss of amplification efficiency, difficulty in distinguishing closely related homologous sequences, and adapting the designed templates to other targets seriously hamper the practical application of the EXPAR. In this work, a hairpin template tailored for the EXPAR system (exp-Hairpin) was constructed by adding identical trigger sequences and enzyme cleavage sites on two arms of the hairpin, achieving theoretically more than 2n amplification efficiency and minimal background amplification of EXPAR. Modulating the stability of the exp-Hairpin template by increasing the stem length, the specificity of detecting target miRNA in highly homologous sequences could be significantly improved. Using miRNA let-7a as a target model, the exp-Hairpin with 8 bp stem length for EXPAR amplification curves could effectively distinguish target let-7a and nontarget let-7b/7c/7f/7g/7i homologous sequences. This strategy enabled the sensitive and accurate analysis of let-7a in diluted human serum with satisfactory recoveries. By simply replacing the loop recognition sequence of exp-Hairpin, the specific detection of miR-200b was also achieved, demonstrating the universality of this strategy. The exp-Hairpin EXPAR accelerates simple and rapid molecular diagnostic applications for short nucleic acids.
Collapse
Affiliation(s)
- Haijing Guo
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yaqiang Feng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| |
Collapse
|
3
|
Chen J, Ren B, Wang Z, Wang Q, Bi J, Sun X. Multiple Isothermal Amplification Coupled with CRISPR-Cas14a for the Naked-eye and Colorimetric Detection of Aflatoxin B1. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55423-55432. [PMID: 38014527 DOI: 10.1021/acsami.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Aflatoxin B1 (AFB1) is highly toxic and challenging to remove, posing significant risks to both human health and economic development. Therefore, there is an urgent need to develop rapid, simple, and sensitive detection technologies. In this study, we introduce a naked-eye and colorimetric method based on multiple isothermal amplifications coupled with CRISPR-Cas14a and investigate its biosensing properties. This technique utilizes composite nanoprobes (MAPs) comprising magnetic nanoparticles and gold nanoparticles. AFB1 is efficiently identified through an aptamer competition process facilitated by magnetic nanoparticles , which triggers multiple isothermal amplification. This converts trace amounts of the toxin into a large quantity of DNA signal. Upon specific activation of the CRISPR-Cas14a complex, the MAPs are cleaved, resulting in significant changes in both color and colorimetric signal. The method demonstrates acceptable sensitivity, with a detection limit of 31.90 pg mL-1 and a wide detection range from 0.05 to 10 ng mL-1. Furthermore, the assay exhibits satisfactory specificity and high accuracy when it is applied to practical samples. Our approach offers a universal sensing platform with potential applications in food safety, environmental monitoring, and clinical diagnostics.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Beizhuo Ren
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qian Wang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jing Bi
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xuan Sun
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430061, China
| |
Collapse
|
4
|
Zhao Z, Xie Z, Chen S, Chen M, Wang X, Yi G. A novel biosensor based on tetrahedral DNA nanostructure and terminal deoxynucleotidyl transferase-assisted amplification strategy for fluorescence analysis of uracil-DNA glycosylase activity. Anal Chim Acta 2023; 1271:341432. [PMID: 37328254 DOI: 10.1016/j.aca.2023.341432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Tetrahedral DNA nanostructure (TDN), as a classical bionanomaterial, which not only has excellent structural stability and rigidity, but also possesses high programmability due to strict base-pairs complementation, is widely used in various biosensing and bioanalysis fields. In this study, we first constructed a novel biosensor based on Uracil DNA glycosylase (UDG) -triggered collapse of TDN and terminal deoxynucleotidyl transferase (TDT)-induced insertion of copper nanoparticles (CuNPs) for fluorescence and visual analysis of UDG activity. In the presence of the target enzyme UDG, the uracil base modified on the TDN were specifically identified and removed to produce an abasic site (AP site). Endonuclease IV (Endo.IV) could cleave the AP site, making the TDN collapse and generating 3'-hydroxy (3'-OH), which were then elongated under the assistance of TDT to produce poly (T) sequences. Finally, Copper (II) sulfate (Cu2+) and l-Ascorbic acid (AA) were added to form CuNPs using poly (T) sequences as templates (T-CuNPs), resulting in a strong fluorescence signal. This method exhibited good selectivity and high sensitivity with a detection limit of 8.6 × 10-5 U/mL. Moreover, the strategy has been successfully applied to the screening of UDG inhibitors and the detection of UDG activity in complex cell lysates, which means that it has promising applications in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Zixin Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zuowei Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Siyi Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Min Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xingyu Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Yi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|