1
|
Meador WE, Saucier MA, Tucker MR, Kruse NA, Mobley AJ, Brower CR, Parkin SR, Clark KM, Hammer NI, Tschumper GS, Delcamp JH. Extended shortwave infrared absorbing antiaromatic fluorenium-indolizine chromophores. Chem Sci 2024; 15:12349-12360. [PMID: 39118622 PMCID: PMC11304523 DOI: 10.1039/d4sc00733f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 08/10/2024] Open
Abstract
Shortwave infrared (SWIR, 1000-1700 nm) and extended SWIR (ESWIR, 1700-2700 nm) absorbing materials are valuable for applications including fluorescence based biological imaging, photodetectors, and light emitting diodes. Currently, ESWIR absorbing materials are largely dominated by inorganic semiconductors which are often costly both in raw materials and manufacturing processes used to produce them. The development of ESWIR absorbing organic molecules is thus of interest due to the tunability, solution processability, and low cost of organic materials compared to their inorganic counterparts. Herein, through the combination of heterocyclic indolizine donors and an antiaromatic fluorene core, a series of organic chromophores with absorption maxima ranging from 1470-2088 nm (0.84-0.59 eV) and absorption onsets ranging from 1693-2596 nm (0.73-0.48 eV) are designed and synthesized. The photophysical and electrochemical properties of these chromophores, referred to as FluIndz herein, are described via absorption spectroscopy in 17 solvents, cyclic voltammetry, solution photostability, and transient absorption spectroscopy. Molecular orbital energies, predicted electronic transitions, and antiaromaticity are compared to higher energy absorbing chromophores using density functional theory. The presence of thermally accessible diradical states is demonstrated using density functional theory and EPR spectroscopy, while XRD crystallography confirms structural connectivity and existence as a single molecule. Overall, the FluIndz chromophore scaffold exhibits a rational means to access organic chromophores with extremely narrow optical gaps.
Collapse
Affiliation(s)
- William E Meador
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Matthew A Saucier
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Max R Tucker
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Nicholas A Kruse
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Alexander J Mobley
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Connor R Brower
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Sean R Parkin
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Kensha M Clark
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Nathan I Hammer
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Gregory S Tschumper
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| | - Jared H Delcamp
- University of Mississippi, Department of Chemistry and Biochemistry Coulter Hall, University MS 38677 USA
| |
Collapse
|
2
|
Wang Q, Wang R, Wang X, Fu M, Gao Y, Feng J, Geng R, Yuan Z, Fan Q, Lu F. An NIR-II-emitting type-I photosensitizer for efficient hypoxic tumor phototheranostics. Chem Commun (Camb) 2024; 60:5322-5325. [PMID: 38666540 DOI: 10.1039/d4cc00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
A small molecule-based NIR-II type-I photosensitizer (IT-IC) with a strong push-pull effect and good planar π-conjugated structure was synthesized. The IT-IC NPs exhibited strong light absorption, outstanding NIR-II fluorescence emission, excellent photothermal conversion and efficient type-I/II ROS generation, showing encouraging therapeutic outcomes for hypoxic tumors.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Ruoqing Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Xiaoyuan Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Mingxuan Fu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yicong Gao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Jianfeng Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Renyong Geng
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, China.
| | - Zhen Yuan
- Faculty of Health Sciences and Center for Cognitive and Brain Sciences, University of Macau, Macau 999078, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Feng Lu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Saucier MA, Kruse NA, Lewis TA, Hammer NI, Delcamp JH. Switch-on near infrared emission in albumin behind dark fabric: toward application in forensic latent bloodstain detection. RSC Adv 2024; 14:9254-9261. [PMID: 38505385 PMCID: PMC10949964 DOI: 10.1039/d4ra00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/21/2024] Open
Abstract
Latent bloodstain detection remains imperative for crime scene investigators. Widely used luminol offers high sensitivity to human blood, but can produce untrustworthy results from a bleach-cleaned crime scene or in a room not dark enough. Furthermore, dark pigments impede imaging bloodstains covered by dark materials with previously reported bloodstain detection agents. A novel on/off human albumin-sensing dye (SO3C7) is reported herein with a longer emission wavelength (942 nm) than previous materials that allows imaging behind ∼5 mm of black fabric. The switch-on emission of SO3C7 is selective and sensitive to human albumin and lasts longer than luminol (24-48 hours). Emission studies, transient absorption spectra (TAS), and near-infrared (NIR) photographs herein describe the albumin sensing properties of the dye.
Collapse
Affiliation(s)
- Matthew A Saucier
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Nicholas A Kruse
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Timothy A Lewis
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| |
Collapse
|
4
|
Meador WE, Lewis TA, Shaik AK, Wijesinghe KH, Yang B, Dass A, Hammer NI, Delcamp JH. Molecular Engineering of Stabilized Silicon-Rosindolizine Shortwave Infrared Fluorophores. J Org Chem 2024; 89:2825-2839. [PMID: 38334085 DOI: 10.1021/acs.joc.3c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fluorescence-based biological imaging in the shortwave infrared (SWIR, 1000-1700 nm) is an attractive replacement for modern in vivo imaging techniques currently employed in both medical and research settings. Xanthene-based fluorophores containing heterocycle donors have recently emerged as a way to access deep SWIR emitting fluorophores. A concern for xanthene-based SWIR fluorophores though is chemical stability toward ambient nucleophiles due to the high electrophilicity of the cationic fluorophore core. Herein, a series of SWIR emitting silicon-rosindolizine (SiRos) fluorophores with emission maxima >1300 nm (up to 1550 nm) are synthesized. The SiRos fluorophore photophysical properties and chemical stability toward nucleophiles are examined through systematic derivatization of the silicon-core alkyl groups, indolizine donor substitution, and the use of o-tolyl or o-xylyl groups appended to the fluorophore core. The dyes are studied via absorption spectroscopy, steady-state emission spectroscopy, solution-based cyclic voltammetry, time-dependent density functional theory (TD-DFT) computational analysis, X-ray diffraction crystallography, and relative chemical stability over time. Optimal chemical stability is observed via the incorporation of the 2-ethylhexyl silicon substituent and the o-xylyl group to protect the core of the fluorophore.
Collapse
Affiliation(s)
- William E Meador
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Timothy A Lewis
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Abdul K Shaik
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Kalpani Hirunika Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Boqian Yang
- HORIBA Scientific, 20 Knightsbridge Rd, Piscataway, New Jersey 08854, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, 322 Coulter Hall, University, Mississippi 38677, United States
- Materials and Manufacturing Directorate (RXNC), Air Force Research Laboratory, 2230 Tenth Street B655, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
5
|
Bu Q, Li P, Xia Y, Hu D, Li W, Shi D, Song K. Design, Synthesis, and Biomedical Application of Multifunctional Fluorescent Polymer Nanomaterials. Molecules 2023; 28:molecules28093819. [PMID: 37175229 PMCID: PMC10179976 DOI: 10.3390/molecules28093819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Luminescent polymer nanomaterials not only have the characteristics of various types of luminescent functional materials and a wide range of applications, but also have the characteristics of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with good water solubility and excellent biocompatibility is of great significance. Exploring efficient functionalization methods for luminescent materials is still one of the core issues in the design and development of new fluorescent materials. With this in mind, this review first introduces the structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then, the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition, the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric nanomaterials, as well as the challenges and opportunities of structure-property correlations, are comprehensively summarized and the corresponding perspectives are well illustrated.
Collapse
Affiliation(s)
- Qingpan Bu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Ping Li
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Yunfei Xia
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Wenjing Li
- School of Education, Changchun Normal University, Changchun 130032, China
| | - Dongfang Shi
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
- Institute of Science, Technology and Innovation, Changchun Normal University, Changchun 130032, China
| |
Collapse
|