1
|
Wang Y, Wang L, Han J. Photoinduced Vicinal Difunctionalization of Diaryliodonium Salts To Access Bis(tetraphenylphosphonium) Salts. Org Lett 2025; 27:1012-1017. [PMID: 39836879 DOI: 10.1021/acs.orglett.4c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Vicinal bis(tetraarylphosphonium) salts have scarcely been reported in the literature. In this study, we demonstrate that visible-light-induced difunctionalization of ortho-trifluoromethylsulfonylated diaryliodonium salts conveniently furnishes bis(phosphonium) salts without additional catalysts or photoinitiators. The methodology establishes a practical platform for the preparation of bis(phosphonium) salts using readily available tertiary phosphines. The bis(tetraarylphosphonium) salts are anticipated to garner a great deal of interest in catalytic and medicinal chemistry.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Jianwei Han
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
2
|
Zhu Y, Yang S, Zhou T, Szostak M. [(NHC)Pd(OAc) 2]: Highly Active Carboxylate Pd(II)-NHC (NHC = N-Heterocyclic Carbene) Precatalysts for Suzuki-Miyaura and Buchwald-Hartwig Cross-Coupling of Amides by N-C(O) Activation. J Org Chem 2024; 89:16203-16213. [PMID: 38950123 PMCID: PMC12008830 DOI: 10.1021/acs.joc.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In the past eight years, the selective cross-coupling of amides by N-C(O) bond activation has emerged as a highly attractive manifold for the manipulation of traditionally unreactive amide bonds. In this Special Issue on Next-Generation Cross-Coupling Chemistry, we report the Suzuki-Miyaura and Buchwald-Hartwig cross-coupling of amides by selective N-C(O) cleavage catalyzed by bench-stable, well-defined carboxylate Pd(II)-NHC (NHC = N-heterocyclic carbene) catalysts {[(NHC)Pd(O2CR)2]}. This class of Pd(II)-NHCs promotes cross-coupling under exceedingly mild room-temperature conditions owing to the facile dissociation of the carboxylate ligands to form the active complex. These readily accessible Pd(II)-NHC precatalysts show excellent functional group tolerance and are compatible with a broad range of amide activating groups. Considering the mild conditions for the cross-coupling and the facile access to carboxylate Pd(II)-NHC complexes, we anticipate that this class of bench-stable complexes will find wide application in the activation of amide N-C(O) and related acyl X-C(O) bonds.
Collapse
Affiliation(s)
- Yawei Zhu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
3
|
Xu Y, Chen W, Pu R, Ding J, An Q, Yang Y, Liu W, Zuo Z. Selective monodeuteration enabled by bisphosphonium catalyzed ring opening processes. Nat Commun 2024; 15:9366. [PMID: 39477917 PMCID: PMC11526102 DOI: 10.1038/s41467-024-53728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The selective incorporation of a deuterium atom into small molecules with high selectivity is highly valuable for medical and chemical research. Unfortunately, this remains challenging due to the complete deuteration caused by commonly used hydrogen isotope exchange strategies. We report the development of a photocatalytic selective monodeuteration protocol utilizing C-C bond as the unconventional functional handle. The synergistic combination of radical-mediated C-C bond scission and deuterium atom transfer processes enables the effective constructions of benzylic CDH moieties with high selectivity for monodeuteration. The combinational use of a bisphosphonium photocatalyst, thiol catalyst, and CH3OD deuteration agent provides operationally simple conditions for photocatalytic monodeuteration. Moreover, the photoinduced electron transfer process of the bisphosphonium photocatalyst is elucidated through a series of spectroscopy experiments, identifying a peculiar back electron transfer process that can be regulated by subsequent nucleophilic additions.
Collapse
Affiliation(s)
- Yuanli Xu
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China
| | - Wenlong Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yi Yang
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China.
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
4
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Bannon R, Morrison G, Smyth M, Moody TS, Wharry S, Roth PMC, Gauron G, Baumann M. Continuous Flow Approach for Benzylic Photo-oxidations Using Compressed Air. Org Process Res Dev 2024; 28:3307-3312. [PMID: 39171129 PMCID: PMC11334174 DOI: 10.1021/acs.oprd.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
A continuous flow approach for the aerobic photo-oxidation of benzylic substrates to ketone and aldehyde products is presented. The resulting process exploits UV-A LEDs (375 nm) in combination with a Corning AFR reactor that ensures effective gas-liquid mixing and leads to short residence times of 1 min. A variety of benzylic substrates are converted to their corresponding carbonyl products, and scalability is demonstrated to produce multigram quantities of products within a few hours. Overall, this continuous flow approach offers several improvements over alternative oxidation methods due to the combined use of air as an oxidant and SAS (sodium anthraquinone-2 sulfonate) as a water-soluble photocatalyst. The use of greener and safer conditions together with process intensification principles renders this flow approach attractive for further industrial applications.
Collapse
Affiliation(s)
- Ruairi Bannon
- School
of Chemistry, Science Centre South, University
College Dublin, Dublin D04 N2E5, Ireland
| | - Gary Morrison
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, U.K.
| | - Megan Smyth
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, U.K.
| | - Thomas S. Moody
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, U.K.
- Arran
Chemical Company, Monksland Industrial
Estate, Roscommon N37 DN24, Ireland
| | - Scott Wharry
- Technology
Department, Almac Sciences, Craigavon BT63 5QD, U.K.
| | - Philippe M. C. Roth
- Corning
Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156
Samois sur Seine, 77215 Avon Cedex, France
| | - Guillaume Gauron
- Corning
Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156
Samois sur Seine, 77215 Avon Cedex, France
| | - Marcus Baumann
- School
of Chemistry, Science Centre South, University
College Dublin, Dublin D04 N2E5, Ireland
| |
Collapse
|
6
|
Lu Y, Zhao J, Sun H, Li J, Yu Z, Ma C, Zhu H, Meng Q. Visible Light-Mediated Selective Aerobic Oxidation of Alcohols Catalyzed by Disulfide in Batch and Flow. J Org Chem 2024; 89:3868-3874. [PMID: 38417115 DOI: 10.1021/acs.joc.3c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Selective aerobic oxidation of alcohols in batch and flow can be realized under light irradiation, utilizing disulfide as the photocatalyst, and a variety of primary and secondary alcohols were converted to the corresponding aldehydes or ketones in up to 99% yield and high selectivity. The reaction efficiency could be increased even further by combining a continuous-flow strategy. Detailed mechanistic studies have also been achieved to determine the role of oxygen and disulfides in this oxidation.
Collapse
Affiliation(s)
- Yue Lu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingnan Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Huinan Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jianing Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zongyi Yu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cunfei Ma
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Hongfei Zhu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qingwei Meng
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Dalian University of Technology, Ningbo 315000, P. R. China
| |
Collapse
|