1
|
Wang T, Jia Z, Zhu C, Zhang L, Ding H. A Biomimetic Approach for Construction of an Advanced Intermediate en Route to Melicolones A and B. J Org Chem 2025. [PMID: 40403164 DOI: 10.1021/acs.joc.5c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
A biomimetic approach for the synthesis of an advanced intermediate en route to melicolones A and B is described, leading to successful construction of the crucial bicyclo[3.2.1]octane carbon framework of these molecules. Key steps of the strategy include a Wolff rearrangement, a titanium-mediated Giese-type cyclization, and a nitrone acylation/rearrangement process. Our approach enables the reliable assembly of a fully functionalized tricyclic precursor, which in turn provides valuable handles for further elaboration of the target molecules.
Collapse
Affiliation(s)
- Tianzhe Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ziqi Jia
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenlong Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hanfeng Ding
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
2
|
Ikeuchi K, Hirokawa Y, Sasage T, Fujii R, Yoshitani A, Suzuki T, Tanino K. Unique Reactivity of the 1,4-Bis(silyloxy)-1,3-cyclopentadiene Moiety: Application to the Synthesis of 7-Norbornanone Derivatives. Chemistry 2024; 30:e202401908. [PMID: 38770667 DOI: 10.1002/chem.202401908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
We describe a method for the synthesis of various 2-silyloxy-2-norbornen-7-ones by exploiting the specific reactivity of the 1,4-bis(silyloxy)-1,3-cyclopentadiene framework, which is generated by the silylation of a 2,2-disubstituted-1,3-cyclopentanedione bearing a picolinoyloxy group at the 2' position of its C-2 side chain. The release of the acyloxy group during the reaction generates carbocations that are then attacked by silyloxy-substituted carbons in the 1,4-bis(silyloxy)-1,3-cyclopentadiene moiety skeleton, forming a 4,5-cis-fused ring skeleton. Skeletal rearrangement of the bicyclic core results in the formation of the corresponding 2-silyloxy-2-norbornen-7-one. This novel transformation of 1,3-cyclopentanedione moieties can be used to synthesise other cyclopentenone-fused bicyclic frameworks.
Collapse
Affiliation(s)
- Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
- Present address: Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yoshito Hirokawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Tomonari Sasage
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Ryo Fujii
- School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Akihiro Yoshitani
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| |
Collapse
|
3
|
Carroll JA, Pashley-Johnson F, Frisch H, Barner-Kowollik C. Photochemical Action Plots Reveal Red-shifted Wavelength-dependent Photoproduct Distributions. Chemistry 2024; 30:e202304174. [PMID: 38267371 DOI: 10.1002/chem.202304174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Photochemical action plots are a powerful tool for mapping photochemical reaction outcomes wavelength-by-wavelength. Typically, they map either the depletion of a reactant or the formation of a specific product as a function of wavelength. Herein, we exploit action plots to simultaneously map the formation of several photochemical products from a single chromophore. We demonstrate that the wavelength-resolved mapping of two reaction products formed during the irradiation of a chalcone species not only shows wavelength dependence - exhibiting the typical strong red-shift of the photochemical reactivity compared to the absorbance spectrum of the chromophore - but also a strong wavelength selectivity with remarkably different product distributions resulting from different irradiation wavelengths.
Collapse
Affiliation(s)
- Joshua A Carroll
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Fred Pashley-Johnson
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Faculty of Science, Ghent University, Krijgslaan 281 (S4-Bis), 9000, Ghent, Belgium
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Insitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|