1
|
Escayola S, Labella J, Szczepanik DW, Poater A, Torres T, Solà M, Matito E. From (Sub)Porphyrins to (Sub)Phthalocyanines: Aromaticity Signatures in the UV-Vis Absorption Spectra. Inorg Chem 2024; 63:18251-18262. [PMID: 39297344 PMCID: PMC11465665 DOI: 10.1021/acs.inorgchem.4c03139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The development of novel synthetic methods has greatly expanded the toolbox available to chemists for engineering porphyrin and phthalocyanine derivatives with precise electronic and optical properties. In this study, we focus on the UV-vis absorption characteristics of substituted phthalocyanines and their contracted analogs, subphthalocyanines, which feature nonplanar, bowl-shaped geometries. These macrocycles, which are central to numerous applications in materials science and catalysis, possess extensive π-conjugated systems that drive their unique electronic properties. We explore how the change from a metalloid (B) to a metal (Zn) and the resulting coordination environments influence the aromaticity and, consequently, the spectroscopic features of these systems. A combined computational and experimental approach reveals a direct correlation between the aromaticity of the external conjugated pathways and the Q bands in the UV-vis spectra. Our findings highlight key structural modifications that can be leveraged to fine-tune the optical properties of porphyrinoid systems, offering new pathways for the design of advanced materials and catalysts with tailored functionalities.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona, Catalonia 17003, Spain
- Donostia
International Physics Center (DIPC), Donostia, Euskadi 20018, Spain
| | - Jorge Labella
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Dariusz W. Szczepanik
- Department
of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Albert Poater
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona, Catalonia 17003, Spain
| | - Tomas Torres
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia,
Campus de Cantoblanco, Madrid 28049, Spain
| | - Miquel Solà
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/Maria Aurèlia Capmany,
69, Girona, Catalonia 17003, Spain
| | - Eduard Matito
- Donostia
International Physics Center (DIPC), Donostia, Euskadi 20018, Spain
- Ikerbasque
Foundation for Science, Bilbao, Euskadi 48011, Spain
| |
Collapse
|
2
|
Wenzel JO, Werner J, Allgaier A, van Slageren J, Fernández I, Unterreiner AN, Breher F. Visible-Light Activation of Diorganyl Bis(pyridylimino) Isoindolide Aluminum(III) Complexes and Their Organometallic Radical Reactivity. Angew Chem Int Ed Engl 2024; 63:e202402885. [PMID: 38511969 DOI: 10.1002/anie.202402885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
We report on the synthesis and characterization of a series of (mostly) air-stable diorganyl bis(pyridylimino) isoindolide (BPI) aluminum complexes and their chemistry upon visible-light excitation. The redox non-innocent BPI pincer ligand allows for efficient charge transfer homolytic processes of the title compounds. This makes them a universal platform for the generation of carbon-centered radicals. The photo-induced homolytic cleavage of the Al-C bonds was investigated by means of stationary and transient UV/Vis spectroscopy, spin trapping experiments, as well as EPR and NMR spectroscopy. The experimental findings were supported by quantum chemical calculations. Reactivity studies enabled the utilization of the aluminum complexes as reactants in tin-free Giese-type reactions and carbonyl alkylations under ambient conditions, which both indicated radical-polar crossover behavior. A deeper understanding of the physical fundamentals and photochemical process was provided, furnishing in turn a new strategy to control the reactivity of bench-stable aluminum organometallics.
Collapse
Affiliation(s)
- Jonas O Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Johannes Werner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Alexander Allgaier
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Israel Fernández
- Universidad Complutense de Madrid, Facultad de Ciencias Químicas, 28040, Madrid, Spain
| | - Andreas-Neil Unterreiner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|